IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics036054422302025x.html
   My bibliography  Save this article

Effects of oxidation temperature on microstructure and spontaneous combustion characteristics of coal: A case study of Shendong long-flame coal

Author

Listed:
  • Shi, Quanlin
  • Jiang, Wenjie
  • Qin, Botao
  • Hao, Mingyue
  • He, Zhenyu

Abstract

To identify effects of the pre-oxidation process on the spontaneous combustion characteristics of Shendong low-rank long-flame coal, the microstructure and oxidation reactivity of coal samples pre-oxidized at different temperature including 70 °C, 100 °C, 200 °C, 300 °C, and 400 °C were studied and compared with those of raw coal. The surface morphology, pore features, functional groups, and microcrystalline structure of coal were studied using SEM, N2 adsorption, XPS, and XRD analyses. Moreover, TG-DSC experiments were conducted to investigate the changes in the spontaneous combustion characteristics of coal. The results indicated that low-temperature pre-oxidation at 70 °C and 100 °C does not alter the physical and chemical structure significantly, so the pore parameters, functional group contents, and microcrystalline structure of these two samples were very similar to those of raw coal. When the pre-oxidation temperature reached and exceeded 200 °C, the specific surface area and total pore volume of coal samples exhibited a significant decrease due to extensive thermal decomposition and consumption of coal components via oxidation. Moreover, high-temperature pre-oxidation treatment above 200 °C sharply reduced the aromatic and aliphatic carbon C–C/C–H content, and this is ascribed to the substantial consumption of primordial organic matter, this made coal macromolecules more tightly packed with an increase in carbon crystal size and carbon matrix order. In addition, with increasing temperature from 200 °C to 400 °C, the C–C/C–H contents decreased and aromaticity of coal increased, which revealed the weak oxidative activity. The heat release △H1 from 30 °C to 300 °C of coal samples after pre-oxidation at 200–400 °C was significantly lower than that of raw coal, while the △H1 values of coal samples treated at 70 °C and 100 °C were close to that of raw coal. Notably, that oxidation treatment at 70 °C resulted in an increase in the amount of heat released, because of the largest specific surface area that increases the risk of spontaneous combustion. Thus, the pre-oxidation treatment increases the risk of spontaneous combustion of coal when the pre-oxidation temperature is lower than a critical temperature.

Suggested Citation

  • Shi, Quanlin & Jiang, Wenjie & Qin, Botao & Hao, Mingyue & He, Zhenyu, 2023. "Effects of oxidation temperature on microstructure and spontaneous combustion characteristics of coal: A case study of Shendong long-flame coal," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s036054422302025x
    DOI: 10.1016/j.energy.2023.128631
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422302025X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128631?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kanwal, Saira & Mehran, Muhammad Taqi & Hassan, Muhammad & Anwar, Mustafa & Naqvi, Salman Raza & Khoja, Asif Hussain, 2022. "An integrated future approach for the energy security of Pakistan: Replacement of fossil fuels with syngas for better environment and socio-economic development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Jia, Zhijie & Lin, Boqiang, 2021. "How to achieve the first step of the carbon-neutrality 2060 target in China: The coal substitution perspective," Energy, Elsevier, vol. 233(C).
    3. Yan, Hongwei & Nie, Baisheng & Kong, Fanbei & Liu, Yuze & Liu, Peijun & Wang, Yongjing & Chen, Zongyu & Yin, Feifei & Gong, Jie & Lin, Shuangshuang & Wang, Xiaotong & Hou, Yanan, 2023. "Experimental investigation of coal particle size on the kinetic properties of coal oxidation and spontaneous combustion limit parameters," Energy, Elsevier, vol. 270(C).
    4. Lü, Hui-Fei & Deng, Jun & Li, Da-Jiang & Xu, Fan & Xiao, Yang & Shu, Chi-Min, 2021. "Effect of oxidation temperature and oxygen concentration on macro characteristics of pre-oxidised coal spontaneous combustion process," Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Quanlin & Sun, Yongjiang & He, Zhenyu & Yan, Hang & Nie, Xiaoyang & Xia, Cuiping, 2024. "Study on the thermal characteristics and heat-insulation ability of gel-stabilized foam used for preventing the spontaneous combustion of coal," Energy, Elsevier, vol. 299(C).
    2. Shi, Quanlin & Long, Lihua & Sun, Yongjiang & Zhao, Shuang & Pang, Yuxuan & Xia, Cuiping, 2024. "Formation mechanism and the extinguishment performance of gel-stabilized foam for inhibiting coal spontaneous combustion," Energy, Elsevier, vol. 303(C).
    3. Zhang, Wei & Wang, Deming & Xin, Haihui & Wang, Chenguang & Xu, Zuoming & Hou, Zhenhai & Qi, Zhangfan, 2024. "Reignition characteristics of lignite affected by pre-oxidation and liquid nitrogen cold soaking," Energy, Elsevier, vol. 303(C).
    4. Qu, Baolin & Zhu, Hongqing & Wang, Jingxin & Li, Binrui & Xie, Linhao & Liao, Qi & Hu, Lintao, 2024. "Dynamic evolution of terahertz permittivity of lignite during oxidation: Microstructural insights," Applied Energy, Elsevier, vol. 363(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yanni & Hou, Yunchao & Yang, Dan & Deng, Jun, 2024. "Transformation and migration of key elements during the thermal reaction of coal spontaneous combustion," Energy, Elsevier, vol. 290(C).
    2. Yang, Xinlei & Chu, Tingxiang & Yu, Minggao & Wang, Liang & Li, Haitao & Wen, Wushuang & Wu, Mingqiu & Wang, Fengchuan & Wang, Jiachen, 2024. "Effect of mechanical energy input during mechanical crushing on the macrokinetics of the coal–oxygen reaction: A laboratory–scale study," Energy, Elsevier, vol. 290(C).
    3. Muhammad Amir Raza & Muhammad Mohsin Aman & Altaf Hussain Rajpar & Mohamed Bashir Ali Bashir & Touqeer Ahmed Jumani, 2022. "Towards Achieving 100% Renewable Energy Supply for Sustainable Climate Change in Pakistan," Sustainability, MDPI, vol. 14(24), pages 1-23, December.
    4. Liu, Wei & Chu, Xiangyu & Xu, Hao & Chen, Wei & Ma, Liwei & Qin, Yueping & Wei, Jun, 2022. "Oxidation reaction constants for coal spontaneous combustion under inert gas environments: An experimental investigation," Energy, Elsevier, vol. 247(C).
    5. Jiang, Hong-Dian & Pradhan, Basanta K. & Dong, Kangyin & Yu, Yan-Yan & Liang, Qiao-Mei, 2024. "An economy-wide impacts of multiple mitigation pathways toward carbon neutrality in China: A CGE-based analysis," Energy Economics, Elsevier, vol. 129(C).
    6. Hou, Yali & Wang, Qunwei & Tan, Tao, 2023. "An ensemble learning framework for rooftop photovoltaic project site selection," Energy, Elsevier, vol. 285(C).
    7. Lijuan Zhang & Tatyana Ponomarenko, 2023. "Directions for Sustainable Development of China’s Coal Industry in the Post-Epidemic Era," Sustainability, MDPI, vol. 15(8), pages 1-32, April.
    8. Sun, Jingchao & Na, Hongming & Yan, Tianyi & Che, Zichang & Qiu, Ziyang & Yuan, Yuxing & Li, Yingnan & Du, Tao & Song, Yanli & Fang, Xin, 2022. "Cost-benefit assessment of manufacturing system using comprehensive value flow analysis," Applied Energy, Elsevier, vol. 310(C).
    9. Sun, Xiaohua & Ren, Junlin & Wang, Yun, 2022. "The impact of resource taxation on resource curse: Evidence from Chinese resource tax policy," Resources Policy, Elsevier, vol. 78(C).
    10. Ang Yang & Xiangyu Meng & He He & Liang Wang & Jing Gao, 2022. "Towards Optimized ARMGs’ Low-Carbon Transition Investment Decision Based on Real Options," Energies, MDPI, vol. 15(14), pages 1-16, July.
    11. Pan, Rongkun & Hu, Daimin & Han, Xuefeng & Chao, Jiangkun & Jia, Hailin, 2023. "Analysis of the wetting and exothermic properties of preoxidized coal and the microscopic mechanism," Energy, Elsevier, vol. 271(C).
    12. Zhang, Xun & Zou, Jiahui & Lu, Bing & Huang, Ge & Yu, Chen & Liang, Huimin, 2023. "Experimental study on effect of mudstone on spontaneous combustion of coal," Energy, Elsevier, vol. 285(C).
    13. Zhang, Tianjun & Wu, Jinyu & Pang, Mingkun & Liu, Rongtao & Zhu, Shipeng & Pan, Hongyu, 2024. "Experimental study on the negative pressure loss generated by the gas influx process around a long borehole," Energy, Elsevier, vol. 296(C).
    14. Xu, Yizhen & Qin, Botao & Shi, Quanlin & Hao, Mingyue & Shao, Xu & Jiang, Zhe & Ma, Zujie, 2023. "Study on the preparation and properties of colloidal gas foam concrete to prevent spontaneous combustion of coal," Energy, Elsevier, vol. 283(C).
    15. Wang, Kai & Hu, Lihong & Deng, Jun & Zhang, Yanni, 2023. "Multiscale thermal behavioral characterization of spontaneous combustion of pre-oxidized coal with different air exposure time," Energy, Elsevier, vol. 262(PA).
    16. Zhang, Jiaye & Chen, Chongming & Zhou, Ao & Rahman, Zia ur & Wang, Xuebin & Stojiljković, Dragoslava & Manić, Nebojsa & Vujanović, Milan & Tan, Houzhang, 2022. "Morphology of char particles from coal pyrolysis in a pressurized entrained flow reactor: Effects of pressure and atmosphere," Energy, Elsevier, vol. 238(PB).
    17. Shenghao Feng & Xiujian Peng & Philip Adams, 2021. "Energy and Economic Implications of Carbon Neutrality in China -- A Dynamic General Equilibrium Analysis," Centre of Policy Studies/IMPACT Centre Working Papers g-318, Victoria University, Centre of Policy Studies/IMPACT Centre.
    18. Wang, Bo & Wang, Jianda & Dong, Kangyin & Nepal, Rabindra, 2024. "How does artificial intelligence affect high-quality energy development? Achieving a clean energy transition society," Energy Policy, Elsevier, vol. 186(C).
    19. Chen, Jiandong & Xu, Chong & Wang, Yuzhi & Li, Ding & Song, Malin, 2021. "Carbon neutrality based on vegetation carbon sequestration for China's cities and counties: Trend, inequality and driver," Resources Policy, Elsevier, vol. 74(C).
    20. Yu Gan & Zifeng Lu & Xin He & Michael Wang & Amer Ahmad Amer, 2023. "Cradle-to-Grave Lifecycle Analysis of Greenhouse Gas Emissions of Light-Duty Passenger Vehicles in China: Towards a Carbon-Neutral Future," Sustainability, MDPI, vol. 15(3), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s036054422302025x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.