IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics036054422403250x.html
   My bibliography  Save this article

Feasibility evaluation of a wind/P2G/SOFC/GT multi-energy microgrid system with synthetic fuel based on C-H-O elemental ternary analysis

Author

Listed:
  • Ding, Xiaoyi
  • Guo, Pengcheng
  • Sun, Wei
  • Harrison, Gareth P.
  • Lv, Xiaojing
  • Weng, Yiwu

Abstract

Power to gas (P2G) uses electrical energy from access renewable power and captured carbon dioxide (CO2) to generate methane (CH4). The technology provides opportunity for replacing fossil fuels with green-powered hydrocarbon, benefiting the reducing of carbon emission. However, the methanation process in P2G requires high H2/CO2 ratio with available amount of hydrogen (H2) restricted by fluctuation of renewable power, bringing limits to the reusing of captured CO2. This paper presents a feasibility analysis of a novel wind/P2G/SOFC/GT multi-energy system (MES) for microgrid. Green-powered CH4 generated from P2G is mixed with captured CO2, bringing additional flexibility to balancing the overall H2/CO2 ratio for utilization. To comprehensively analyze the feasibility of synthesis CH4/CO2 fuel, evaluation of MES is carried out from both design and off-design conditions. For the design condition, a methodology of C-H-O elemental ternary analysis is applied to reflect the process of fuel utilization and reveal its connection with the trade-off feature of multiple components. For the off-design condition, fluctuations of user's load and renewable source during winter and summer scenarios are considered in a case study. Results show that under C-H-O distribution of 5.8 %, 61.2 % and 33.0 %, the SOFC/GT could operate safety with electrical efficiency of 62 %, capable of participating as a secondary power source for MES. Meanwhile, the overall H2/CO2 utilization ratio of the system is reduced from 4:1 to 2.4:1, where extremes conditions during winter and summer scenarios are evaluated with renewable penetration level of 94 % and wind curtailment rate below 5 % reached.

Suggested Citation

  • Ding, Xiaoyi & Guo, Pengcheng & Sun, Wei & Harrison, Gareth P. & Lv, Xiaojing & Weng, Yiwu, 2024. "Feasibility evaluation of a wind/P2G/SOFC/GT multi-energy microgrid system with synthetic fuel based on C-H-O elemental ternary analysis," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s036054422403250x
    DOI: 10.1016/j.energy.2024.133474
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422403250X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133474?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Obara, Shin'ya, 2023. "Economic performance of an SOFC combined system with green hydrogen methanation of stored CO2," Energy, Elsevier, vol. 262(PA).
    2. Mehrabian, Morteza & Mahmoudimehr, Javad, 2023. "A correlation for optimal steam-to-fuel ratio in a biogas-fueled solid oxide fuel cell with internal steam reforming by using Artificial Neural Networks," Renewable Energy, Elsevier, vol. 219(P1).
    3. Wang, Xusheng & Lv, Xiaojing & Weng, Yiwu, 2020. "Performance analysis of a biogas-fueled SOFC/GT hybrid system integrated with anode-combustor exhaust gas recirculation loops," Energy, Elsevier, vol. 197(C).
    4. Azizi, Mohammad Ali & Brouwer, Jacob, 2018. "Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization," Applied Energy, Elsevier, vol. 215(C), pages 237-289.
    5. Lv, Xiaojing & Ding, Xiaoyi & Weng, Yiwu, 2019. "Effect of fuel composition fluctuation on the safety performance of an IT-SOFC/GT hybrid system," Energy, Elsevier, vol. 174(C), pages 45-53.
    6. Qiu, Rui & Zhang, Haoran & Wang, Guotao & Liang, Yongtu & Yan, Jinyue, 2023. "Green hydrogen-based energy storage service via power-to-gas technologies integrated with multi-energy microgrid," Applied Energy, Elsevier, vol. 350(C).
    7. Wang, Jiangjiang & Cui, Zhiheng & Yao, Wenqi & Huo, Shuojie, 2023. "Regulation strategies and thermodynamic analysis of combined cooling, heating, and power system integrated with biomass gasification and solid oxide fuel cell," Energy, Elsevier, vol. 266(C).
    8. Gu, Chenghong & Tang, Can & Xiang, Yue & Xie, Da, 2019. "Power-to-gas management using robust optimisation in integrated energy systems," Applied Energy, Elsevier, vol. 236(C), pages 681-689.
    9. Ding, Xiaoyi & Sun, Wei & Harrison, Gareth P. & Lv, Xiaojing & Weng, Yiwu, 2020. "Multi-objective optimization for an integrated renewable, power-to-gas and solid oxide fuel cell/gas turbine hybrid system in microgrid," Energy, Elsevier, vol. 213(C).
    10. Teng, Xiangyu & Zhuang, Weiwei & Liu, Fan-peng & Chang, Tzu-han & Chiu, Yung-ho, 2023. "China's path of carbon neutralization to develop green energy and improve energy efficiency," Renewable Energy, Elsevier, vol. 206(C), pages 397-408.
    11. Lv, Xiaojing & Liu, Xing & Gu, Chenghong & Weng, Yiwu, 2016. "Determination of safe operation zone for an intermediate-temperature solid oxide fuel cell and gas turbine hybrid system," Energy, Elsevier, vol. 99(C), pages 91-102.
    12. Sun, Wei & Harrison, Gareth P., 2019. "Wind-solar complementarity and effective use of distribution network capacity," Applied Energy, Elsevier, vol. 247(C), pages 89-101.
    13. Samanta, Samiran & Roy, Dibyendu & Roy, Sumit & Smallbone, Andrew & Roskilly, Anthony Paul, 2023. "Techno-economic analysis of a fuel-cell driven integrated energy hub for decarbonising transportation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    14. Siqin, Zhuoya & Niu, DongXiao & Wang, Xuejie & Zhen, Hao & Li, MingYu & Wang, Jingbo, 2022. "A two-stage distributionally robust optimization model for P2G-CCHP microgrid considering uncertainty and carbon emission," Energy, Elsevier, vol. 260(C).
    15. Gorre, Jachin & Ruoss, Fabian & Karjunen, Hannu & Schaffert, Johannes & Tynjälä, Tero, 2020. "Cost benefits of optimizing hydrogen storage and methanation capacities for Power-to-Gas plants in dynamic operation," Applied Energy, Elsevier, vol. 257(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, Xiaoyi & Sun, Wei & Harrison, Gareth P. & Lv, Xiaojing & Weng, Yiwu, 2020. "Multi-objective optimization for an integrated renewable, power-to-gas and solid oxide fuel cell/gas turbine hybrid system in microgrid," Energy, Elsevier, vol. 213(C).
    2. Nikiforakis, Ioannis & Mamalis, Sotirios & Assanis, Dimitris, 2025. "Understanding Solid Oxide Fuel Cell Hybridization: A Critical Review," Applied Energy, Elsevier, vol. 377(PC).
    3. Wang, Xusheng & Lv, Xiaojing & Weng, Yiwu, 2020. "Performance analysis of a biogas-fueled SOFC/GT hybrid system integrated with anode-combustor exhaust gas recirculation loops," Energy, Elsevier, vol. 197(C).
    4. Son, Yeong Geon & Oh, Byeong Chan & Acquah, Moses Amoasi & Kim, Sung Yul, 2023. "Optimal facility combination set of integrated energy system based on consensus point between independent system operator and independent power producer," Energy, Elsevier, vol. 266(C).
    5. Ji, Zhixing & Qin, Jiang & Cheng, Kunlin & Guo, Fafu & Zhang, Silong & Dong, Peng, 2019. "Thermodynamics analysis of a turbojet engine integrated with a fuel cell and steam injection for high-speed flight," Energy, Elsevier, vol. 185(C), pages 190-201.
    6. Tan, Luzhi & Chen, Changnian & Gong, Zhiqiang & Xia, Lijiang, 2023. "Performance evaluation on a novel combined cool/heat and power (CCP/CHP) system integrating an SOFC-GT plant with a solar-assisted LiBr absorption cooling/heating unit," Energy, Elsevier, vol. 283(C).
    7. Ji, Jie & Wen, Wenchao & Xie, Yingqi & Xia, Aoyun & Wang, Wenjie & Xie, Jinbo & Yin, Qingyuan & Ma, Mengyu & Huang, Hui & Huang, Xiaolong & Zhang, Chu & Wang, Yaodong, 2024. "Optimization and uncertainty analysis of Co-combustion ratios in a semi-isolated green energy combined cooling, heating, and power system (SIGE-CCHP)," Energy, Elsevier, vol. 302(C).
    8. Wang, Xusheng & Lv, Xiaojing & Mi, Xicong & Spataru, Catalina & Weng, Yiwu, 2022. "Coordinated control approach for load following operation of SOFC-GT hybrid system," Energy, Elsevier, vol. 248(C).
    9. Mohammad shafie, Mohammad & Ali rajabipour, & Mehrpooya, Mehdi, 2022. "Investigation of an electrochemical conversion of carbon dioxide to ethanol and solid oxide fuel cell, gas turbine hybrid process," Renewable Energy, Elsevier, vol. 184(C), pages 1112-1129.
    10. Ji, Zhixing & Qin, Jiang & Cheng, Kunlin & Liu, He & Zhang, Silong & Dong, Peng, 2019. "Performance evaluation of a turbojet engine integrated with interstage turbine burner and solid oxide fuel cell," Energy, Elsevier, vol. 168(C), pages 702-711.
    11. Yang, Sheng & Jin, Zhengpeng & Ji, Feng & Deng, Chengwei & Liu, Zhiqiang, 2023. "Proposal and analysis of a combined cooling, heating, and power system with humidity control based on solid oxide fuel cell," Energy, Elsevier, vol. 284(C).
    12. Guan, Jin & Lv, Xiaojing & Spataru, Catalina & Weng, Yiwu, 2021. "Experimental and numerical study on self-sustaining performance of a 30-kW micro gas turbine generator system during startup process," Energy, Elsevier, vol. 236(C).
    13. Ji, Zhixing & Qin, Jiang & Cheng, Kunlin & Guo, Fafu & Zhang, Silong & Zhou, Chaoying & Dong, Peng, 2020. "Determination of the safe operation zone for a turbine-less and solid oxide fuel cell hybrid electric jet engine on unmanned aerial vehicles," Energy, Elsevier, vol. 202(C).
    14. Zhang, Dongdong & Zhu, Hongyu & Zhang, Hongcai & Goh, Hui Hwang & Liu, Hui & Wu, Thomas, 2022. "An optimized design of residential integrated energy system considering the power-to-gas technology with multi-functional characteristics," Energy, Elsevier, vol. 238(PA).
    15. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    16. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    17. Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
    18. Teng, Su & Hamrang, Farzad & Ashraf Talesh, Seyed Saman, 2021. "Economic performance assessment of a novel combined power generation cycle," Energy, Elsevier, vol. 231(C).
    19. Victor Hugo Souza de Abreu & Victória Gonçalves Ferreira Pereira & Laís Ferreira Crispino Proença & Fabio Souza Toniolo & Andrea Souza Santos, 2023. "A Systematic Study on Techno-Economic Evaluation of Hydrogen Production," Energies, MDPI, vol. 16(18), pages 1-23, September.
    20. Mehar Ullah & Daniel Gutierrez-Rojas & Eero Inkeri & Tero Tynjälä & Pedro H. J. Nardelli, 2022. "Operation of Power-to-X-Related Processes Based on Advanced Data-Driven Methods: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s036054422403250x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.