IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v236y2021ics0360544221016844.html
   My bibliography  Save this article

Engineering thermodynamics and sustainability

Author

Listed:
  • Zevenhoven, Ron

Abstract

This text (based on the opening keynote talk for CPOTE-2020) addresses the role of engineering thermodynamics in a world where mankind wishes to have access to low-cost energy. In practice, this implies a central role in the fine balance between economic growth, a risk of modern slavery, exploitation of the Earth's resources and global environmental problems such as climate change and scarcity of water, often leading to armed conflict. Clearly, the negative effects of all this may be alleviated a bit by selecting proper and low-cost energy sources and resources and using these as effectively as possible with zero or a minimum of negative side-effects. Engineering thermodynamics is an important tool here that can feed important information into the question: “How can things be done in a sustainable way (and make the world a better place)?" Thus, the sustainability of energy use will here be considered also from the viewpoints of the UN's seventeen Sustainable Development Goals (SDGs). Methods and tools for describing and optimizing energy use and energy-intensive processes and activities will be presented and mirrored against the use of available energy and material resources and the environmental footprint of that. This will give guidelines for how the scope must be widened to more multi-disciplinary evaluations and, in reverse, how engineering thermodynamics can be used as a tool for non-engineers and non-thermodynamicists, including decision-makers and politicians.

Suggested Citation

  • Zevenhoven, Ron, 2021. "Engineering thermodynamics and sustainability," Energy, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:energy:v:236:y:2021:i:c:s0360544221016844
    DOI: 10.1016/j.energy.2021.121436
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221016844
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121436?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zevenhoven, R. & Beyene, A., 2011. "The relative contribution of waste heat from power plants to global warming," Energy, Elsevier, vol. 36(6), pages 3754-3762.
    2. Umara Khan & Ron Zevenhoven & Tor-Martin Tveit, 2020. "Evaluation of the Environmental Sustainability of a Stirling Cycle-Based Heat Pump Using LCA," Energies, MDPI, vol. 13(17), pages 1-16, August.
    3. Phil Williamson, 2016. "Emissions reduction: Scrutinize CO2 removal methods," Nature, Nature, vol. 530(7589), pages 153-155, February.
    4. Zevenhoven, Ron & Slotte, Martin & Åbacka, Jacob & Highfield, James, 2016. "A comparison of CO2 mineral sequestration processes involving a dry or wet carbonation step," Energy, Elsevier, vol. 117(P2), pages 604-611.
    5. Arpagaus, Cordin & Bless, Frédéric & Uhlmann, Michael & Schiffmann, Jürg & Bertsch, Stefan S., 2018. "High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials," Energy, Elsevier, vol. 152(C), pages 985-1010.
    6. Umara Khan & Ron Zevenhoven & Lydia Stougie & Tor-Martin Tveit, 2021. "Prediction of Stirling-Cycle-Based Heat Pump Performance and Environmental Footprint with Exergy Analysis and LCA," Energies, MDPI, vol. 14(24), pages 1-12, December.
    7. Jeff Tollefson, 2019. "Geoengineering debate shifts to UN environment assembly," Nature, Nature, vol. 567(7747), pages 156-156, March.
    8. Zevenhoven, Ron & Fält, Martin, 2018. "Radiative cooling through the atmospheric window: A third, less intrusive geoengineering approach," Energy, Elsevier, vol. 152(C), pages 27-33.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucarelli, Giuseppe & Genovese, Matteo & Florio, Gaetano & Fragiacomo, Petronilla, 2023. "3E (energy, economic, environmental) multi-objective optimization of CCHP industrial plant: Investigation of the optimal technology and the optimal operating strategy," Energy, Elsevier, vol. 278(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Fangtian & Fu, Lin & Sun, Jian & Zhang, Shigang, 2014. "A new waste heat district heating system with combined heat and power (CHP) based on ejector heat exchangers and absorption heat pumps," Energy, Elsevier, vol. 69(C), pages 516-524.
    2. Kate Dooley & Ellycia Harrould‐Kolieb & Anita Talberg, 2021. "Carbon‐dioxide Removal and Biodiversity: A Threat Identification Framework," Global Policy, London School of Economics and Political Science, vol. 12(S1), pages 34-44, April.
    3. Els van der Roest & Stijn Beernink & Niels Hartog & Jan Peter van der Hoek & Martin Bloemendal, 2021. "Towards Sustainable Heat Supply with Decentralized Multi-Energy Systems by Integration of Subsurface Seasonal Heat Storage," Energies, MDPI, vol. 14(23), pages 1-31, November.
    4. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    5. Dong, Yixiu & Yan, Hongzhi & Wang, Ruzhu, 2024. "Significant thermal upgrade via cascade high temperature heat pump with low GWP working fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    6. Firth, Anton & Zhang, Bo & Yang, Aidong, 2019. "Quantification of global waste heat and its environmental effects," Applied Energy, Elsevier, vol. 235(C), pages 1314-1334.
    7. Marina, A. & Spoelstra, S. & Zondag, H.A. & Wemmers, A.K., 2021. "An estimation of the European industrial heat pump market potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    8. Hu, Tianle & Xie, Xiaoyun & Jiang, Yi, 2017. "Simulation research on a variable-lift absorption cycle and its application in waste heat recovery of combined heat and power system," Energy, Elsevier, vol. 140(P1), pages 912-921.
    9. Els van der Roest & Theo Fens & Martin Bloemendal & Stijn Beernink & Jan Peter van der Hoek & Ad J. M. van Wijk, 2021. "The Impact of System Integration on System Costs of a Neighborhood Energy and Water System," Energies, MDPI, vol. 14(9), pages 1-33, May.
    10. Wil Burns & Simon Nicholson, 2017. "Bioenergy and carbon capture with storage (BECCS): the prospects and challenges of an emerging climate policy response," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 7(4), pages 527-534, December.
    11. Li, Xiaoqiong & Wang, Xiaoyan & Zhang, Yufeng & Fang, Lei & Deng, Na & Zhang, Yan & Jin, Zhendong & Yu, Xiaohui & Yao, Sheng, 2020. "Experimental and economic analysis with a novel ejector-based detection system for thermodynamic measurement of compressors," Applied Energy, Elsevier, vol. 261(C).
    12. Baena-Moreno, Francisco M. & Rodríguez-Galán, Mónica & Vega, Fernando & Reina, T.R. & Vilches, Luis F. & Navarrete, Benito, 2019. "Converting CO2 from biogas and MgCl2 residues into valuable magnesium carbonate: A novel strategy for renewable energy production," Energy, Elsevier, vol. 180(C), pages 457-464.
    13. Gopalakrishna Gangisetty & Ron Zevenhoven, 2023. "A Review of Nanoparticle Material Coatings in Passive Radiative Cooling Systems Including Skylights," Energies, MDPI, vol. 16(4), pages 1-59, February.
    14. Lincoln, Benjamin James & Kong, Lana & Pineda, Alyssa Mae & Walmsley, Timothy Gordon, 2022. "Process integration and electrification for efficient milk evaporation systems," Energy, Elsevier, vol. 258(C).
    15. Albà, C.G. & Alkhatib, I.I.I. & Llovell, F. & Vega, L.F., 2023. "Hunting sustainable refrigerants fulfilling technical, environmental, safety and economic requirements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    16. Guido Francesco Frate & Lorenzo Ferrari & Umberto Desideri, 2020. "Rankine Carnot Batteries with the Integration of Thermal Energy Sources: A Review," Energies, MDPI, vol. 13(18), pages 1-28, September.
    17. Guelpa, E. & Capone, M. & Sciacovelli, A. & Vasset, N. & Baviere, R. & Verda, V., 2023. "Reduction of supply temperature in existing district heating: A review of strategies and implementations," Energy, Elsevier, vol. 262(PB).
    18. Natanael Bolson & Maxim Yutkin & Tadeusz Patzek, 2023. "Primary Power Analysis of a Global Electrification Scenario," Sustainability, MDPI, vol. 15(19), pages 1-20, October.
    19. Elsa Klinac & James Kenneth Carson & Duy Hoang & Qun Chen & Donald John Cleland & Timothy Gordon Walmsley, 2023. "Multi-Level Process Integration of Heat Pumps in Meat Processing," Energies, MDPI, vol. 16(8), pages 1-16, April.
    20. Eyerer, Sebastian & Dawo, Fabian & Kaindl, Johannes & Wieland, Christoph & Spliethoff, Hartmut, 2019. "Experimental investigation of modern ORC working fluids R1224yd(Z) and R1233zd(E) as replacements for R245fa," Applied Energy, Elsevier, vol. 240(C), pages 946-963.

    More about this item

    Keywords

    Engineering thermodynamics; Sustainability;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:236:y:2021:i:c:s0360544221016844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.