IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v152y2018icp27-33.html
   My bibliography  Save this article

Radiative cooling through the atmospheric window: A third, less intrusive geoengineering approach

Author

Listed:
  • Zevenhoven, Ron
  • Fält, Martin

Abstract

Geoengineering methods based on either direct carbon dioxide removal (CDR) from the atmosphere or solar radiation management (SRM) that curtails solar irradiation are campaigned for as technical solutions that would slow down the global temperature rise and climate change. Except for a few CDR methods, this does not receive much interest from policy-makers as a result of a lack of evidence on net advantages and decision-making challenges related to boundary-crossing effects, not to mention costs. An alternative, third geoengineering approach would be enhanced cooling by thermal radiation from the Earth's surface into space. The so-called atmospheric window, the 8–14 μm bandwidth where the atmosphere is transparent for thermal radiation indeed offers a “window of opportunity” for technology that enables sending out thermal radiation at rates that significantly exceed the natural process. This paper describes work that addresses this, with focus on technical devices that combine materials with the properties required for enhanced long wavelength (LW) thermal radiation heat transfer from Earth to space, through the atmospheric window. One example is a skylight (roof window) developed and tested at our institute, using ZnS windows and HFC-type gas (performing better than CO2 or NH3). Suggestions for several other system layouts are given.

Suggested Citation

  • Zevenhoven, Ron & Fält, Martin, 2018. "Radiative cooling through the atmospheric window: A third, less intrusive geoengineering approach," Energy, Elsevier, vol. 152(C), pages 27-33.
  • Handle: RePEc:eee:energy:v:152:y:2018:i:c:p:27-33
    DOI: 10.1016/j.energy.2018.03.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218304936
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.03.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gopalakrishna Gangisetty & Ron Zevenhoven, 2023. "A Review of Nanoparticle Material Coatings in Passive Radiative Cooling Systems Including Skylights," Energies, MDPI, vol. 16(4), pages 1-59, February.
    2. Xing, Daoming & Li, Nianping & Cui, Haijiao & Zhou, Linxuan & Liu, Qingqing, 2020. "Theoretical study of infrared transparent cover preventing condensation on indoor radiant cooling surfaces," Energy, Elsevier, vol. 201(C).
    3. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Xuan, Qingdong & Su, Yuehong & Pei, Gang, 2019. "A novel strategy for a building-integrated diurnal photovoltaic and all-day radiative cooling system," Energy, Elsevier, vol. 183(C), pages 892-900.
    4. Vilà, Roger & Medrano, Marc & Castell, Albert, 2023. "Numerical analysis of the combination of radiative collectors and emitters to improve the performance of water-water compression heat pumps under different climates," Energy, Elsevier, vol. 266(C).
    5. Sato, Daisuke & Yamada, Noboru, 2019. "Review of photovoltaic module cooling methods and performance evaluation of the radiative cooling method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 151-166.
    6. Zhao, Bin & Hu, Mingke & Ao, Xianze & Huang, Xiaona & Ren, Xiao & Pei, Gang, 2019. "Conventional photovoltaic panel for nocturnal radiative cooling and preliminary performance analysis," Energy, Elsevier, vol. 175(C), pages 677-686.
    7. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Pei, Gang, 2019. "Radiative cooling: A review of fundamentals, materials, applications, and prospects," Applied Energy, Elsevier, vol. 236(C), pages 489-513.
    8. Zevenhoven, Ron, 2021. "Engineering thermodynamics and sustainability," Energy, Elsevier, vol. 236(C).
    9. Huang, Jiachen & Zhang, Xuan-kai & Yu, Xiyu & Tang, G.H. & Wang, Xinyu & Du, Mu, 2024. "Scalable self-adaptive radiative cooling film through VO2-based switchable core–shell particles," Renewable Energy, Elsevier, vol. 224(C).
    10. Dong, Yan & Han, Han & Wang, Fuqiang & Zhang, Yingjie & Cheng, Ziming & Shi, Xuhang & Yan, Yuying, 2022. "A low-cost sustainable coating: Improving passive daytime radiative cooling performance using the spectral band complementarity method," Renewable Energy, Elsevier, vol. 192(C), pages 606-616.
    11. Vall, Sergi & Johannes, Kévyn & David, Damien & Castell, Albert, 2020. "A new flat-plate radiative cooling and solar collector numerical model: Evaluation and metamodeling," Energy, Elsevier, vol. 202(C).
    12. Lv, Song & Ji, Yishuang & Qian, Zuoqin & He, Wei & Hu, Zhongting & Liu, Minghou, 2021. "A novel strategy of enhancing sky radiative cooling by solar photovoltaic-thermoelectric cooler," Energy, Elsevier, vol. 219(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:152:y:2018:i:c:p:27-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.