IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v235y2021ics0360544221015279.html
   My bibliography  Save this article

Structural features of protic ionic liquids and their impact on pretreatment performance for 2G ethanol production

Author

Listed:
  • Pin, Thaynara C.
  • Nakasu, Pedro S.Y.
  • Rabelo, Sarita C.
  • Costa, Aline C.

Abstract

Biomass pretreatment with protic ionic liquids (PILs) is a promising source of renewable energy and bioproducts, in which different cation/anion combinations may present different behavior towards biomass modification such as selective lignin and/or carbohydrate solubilization. The potential of 20 PILs as pretreatment agents was investigated, whose cations presented two different functional groups and different carbon chain lengths. The best solvent in terms of lignin solubilization during pretreatment was obtained by cations with a functional group (-OH and –NH2). High cellulose conversion was obtained with ethanolamine and ethylenediamine monoacetate ([2He][Ac] and [Etid][Ac]), under different pretreatment conditions (175 °C and 140 °C for 2 h, respectively). The presence of an alkaline anion and a functionalized cation enhanced the pretreatment effectiveness. The results presented in this work will be useful to design novel protic ionic liquids for pretreatment applications in biofuel processes, which can also be integrated to produce bioproducts within the biorefinery concept.

Suggested Citation

  • Pin, Thaynara C. & Nakasu, Pedro S.Y. & Rabelo, Sarita C. & Costa, Aline C., 2021. "Structural features of protic ionic liquids and their impact on pretreatment performance for 2G ethanol production," Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:energy:v:235:y:2021:i:c:s0360544221015279
    DOI: 10.1016/j.energy.2021.121279
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221015279
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121279?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Yayuan & Illukpitiya, Prabodh, 2016. "Cost minimization of supplying biomass for ethanol biorefineries," Energy, Elsevier, vol. 96(C), pages 209-214.
    2. Isa Hasanov & Merlin Raud & Timo Kikas, 2020. "The Role of Ionic Liquids in the Lignin Separation from Lignocellulosic Biomass," Energies, MDPI, vol. 13(18), pages 1-24, September.
    3. Chandra, R. & Takeuchi, H. & Hasegawa, T., 2012. "Hydrothermal pretreatment of rice straw biomass: A potential and promising method for enhanced methane production," Applied Energy, Elsevier, vol. 94(C), pages 129-140.
    4. Dias, Marina O.S. & Junqueira, Tassia L. & Jesus, Charles D.F. & Rossell, Carlos E.V. & Maciel Filho, Rubens & Bonomi, Antonio, 2012. "Improving second generation ethanol production through optimization of first generation production process from sugarcane," Energy, Elsevier, vol. 43(1), pages 246-252.
    5. Zabed, H. & Sahu, J.N. & Suely, A. & Boyce, A.N. & Faruq, G., 2017. "Bioethanol production from renewable sources: Current perspectives and technological progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 475-501.
    6. Rezania, Shahabaldin & Oryani, Bahareh & Cho, Jinwoo & Talaiekhozani, Amirreza & Sabbagh, Farzaneh & Hashemi, Beshare & Rupani, Parveen Fatemeh & Mohammadi, Ali Akbar, 2020. "Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview," Energy, Elsevier, vol. 199(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Poolakkalody, Najya Jabeen & Ramesh, Kaviraj & Palliprath, Suchithra & Nittoor, Shima Namath & Santiago, Rogelio & Kabekkodu, Shama Prasada & Manisseri, Chithra, 2023. "Understanding triethylammonium hydrogen sulfate ([TEA][HSO4]) pretreatment induced changes in Pennisetum polystachion cell wall matrix and its implications on biofuel yield," Renewable Energy, Elsevier, vol. 209(C), pages 420-430.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Bo & Wang, Yan-Wei & Dai, Yong-Hua & Song, Chao & Zhu, Qi-Li & Qin, Han & Tan, Fu-Rong & Chen, Han-Cheng & Dai, Li-Chun & Hu, Guo-Quan & He, Ming-Xiong, 2021. "Current status and future prospective of bio-ethanol industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Sahu, Omprakash, 2021. "Appropriateness of rose (Rosa hybrida) for bioethanol conversion with enzymatic hydrolysis: Sustainable development on green fuel production," Energy, Elsevier, vol. 232(C).
    3. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François & Ensinas, Adriano, 2018. "Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 152-164.
    4. H K, Narendra Kumar & N, Chandra Mohana & H C, Amrutha & D, Rakshith & B P, Harini & Satish, S., 2023. "Biomass conversion through optimization of cellulase from Chryseobacterium junjuense Bp17 and their utility in bioethanol production," Energy, Elsevier, vol. 283(C).
    5. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    6. Li, Wen-Chao & Li, Xia & Zhu, Jia-Qing & Qin, Lei & Li, Bing-Zhi & Yuan, Ying-Jin, 2018. "Improving xylose utilization and ethanol production from dry dilute acid pretreated corn stover by two-step and fed-batch fermentation," Energy, Elsevier, vol. 157(C), pages 877-885.
    7. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    8. Karami, Kavosh & Karimi, Keikhosro & Mirmohamadsadeghi, Safoora & Kumar, Rajeev, 2022. "Mesophilic aerobic digestion: An efficient and inexpensive biological pretreatment to improve biogas production from highly-recalcitrant pinewood," Energy, Elsevier, vol. 239(PE).
    9. Daegi Kim & Kunio Yoshikawa & Ki Young Park, 2015. "Characteristics of Biochar Obtained by Hydrothermal Carbonization of Cellulose for Renewable Energy," Energies, MDPI, vol. 8(12), pages 1-9, December.
    10. Dhiman, Saurabh Sudha & David, Aditi & Braband, Vanessa W. & Hussein, Abdulmenan & Salem, David R. & Sani, Rajesh K., 2017. "Improved bioethanol production from corn stover: Role of enzymes, inducers and simultaneous product recovery," Applied Energy, Elsevier, vol. 208(C), pages 1420-1429.
    11. Sitka, Andrzej & Szulc, Piotr & Smykowski, Daniel & Jodkowski, Wiesław, 2021. "Application of poultry manure as an energy resource by its gasification in a prototype rotary counterflow gasifier," Renewable Energy, Elsevier, vol. 175(C), pages 422-429.
    12. Monlau, F. & Sambusiti, C. & Antoniou, N. & Barakat, A. & Zabaniotou, A., 2015. "A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process," Applied Energy, Elsevier, vol. 148(C), pages 32-38.
    13. Andrade Díaz, Christhel & Albers, Ariane & Zamora-Ledezma, Ezequiel & Hamelin, Lorie, 2024. "The interplay between bioeconomy and the maintenance of long-term soil organic carbon stock in agricultural soils: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    14. Nariê Rinke Dias de Souza & Bruno Colling Klein & Mateus Ferreira Chagas & Otavio Cavalett & Antonio Bonomi, 2021. "Towards Comparable Carbon Credits: Harmonization of LCA Models of Cellulosic Biofuels," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
    15. Małgorzata Hawrot-Paw & Aleksander Stańczuk, 2022. "From Waste Biomass to Cellulosic Ethanol by Separate Hydrolysis and Fermentation (SHF) with Trichoderma viride," Sustainability, MDPI, vol. 15(1), pages 1-10, December.
    16. Vasilakou, K. & Nimmegeers, P. & Billen, P. & Van Passel, S., 2023. "Geospatial environmental techno-economic assessment of pretreatment technologies for bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    17. Lin, Boqiang & Xu, Bin, 2018. "How to promote the growth of new energy industry at different stages?," Energy Policy, Elsevier, vol. 118(C), pages 390-403.
    18. Wu, Horng-Wen & Lin, Ke-Wei, 2019. "Hydrogen-rich syngas production by reforming of ethanol blended with aqueous urea using a thermodynamic analysis," Energy, Elsevier, vol. 166(C), pages 541-551.
    19. Copa Rey, José Ramón & Tamayo Pacheco, Jorge Jadid & António da Cruz Tarelho, Luís & Silva, Valter & Cardoso, João Sousa & Silveira, José Luz & Tuna, Celso Eduardo, 2021. "Evaluation of cogeneration alternative systems integrating biomass gasification applied to a Brazilian sugar industry," Renewable Energy, Elsevier, vol. 178(C), pages 318-333.
    20. Clauser, Nicolás M. & Felissia, Fernando E. & Area, María C. & Vallejos, María E., 2021. "A framework for the design and analysis of integrated multi-product biorefineries from agricultural and forestry wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:235:y:2021:i:c:s0360544221015279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.