IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v234y2021ics0360544221014584.html
   My bibliography  Save this article

An optimization study on a typical renewable microgrid energy system with energy storage

Author

Listed:
  • Graça Gomes, J.
  • Xu, H.J.
  • Yang, Q.
  • Zhao, C.Y.

Abstract

In isolated microgrids and remote regions, the challenge of developing reliable and self-sufficient renewable energy systems is amplified due to the lack of grid flexibility options. One of the leading solutions to increase renewable energy usage in isolated systems is the commission of energy storage. The current study proposes a novel optimization model that sizes the most cost-efficient renewable power capacity mix of an autonomous microgrid supported by storage technologies. The proposed algorithm considers operational, technical and land-use constraints. The problem is formulated using linear programming, is tested and scrutinized with sets of historical weather, load demand and installation prices data, and is modelled hour-by-hour. The method is applied to Corvo, an island in the Azores archipelago, Portugal. The results obtained exhibit that the proposed approach provides the optimal configuration of the renewable-based microgrid with an LCOE (Levelized Cost of electricity) of 0.21 €/kWh, a value lower than a diesel-based alternative, and while ensuring minimum land area occupation. Furthermore, sensitivity analysis is also presented to examine the effect of variables on the LCOE and PC (present cost) of the system. The present study shows that the developed optimal sizing model can improve electricity planning and facilitate energy transition in distributed power systems.

Suggested Citation

  • Graça Gomes, J. & Xu, H.J. & Yang, Q. & Zhao, C.Y., 2021. "An optimization study on a typical renewable microgrid energy system with energy storage," Energy, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221014584
    DOI: 10.1016/j.energy.2021.121210
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221014584
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121210?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Zhengmao & Xu, Yan, 2018. "Optimal coordinated energy dispatch of a multi-energy microgrid in grid-connected and islanded modes," Applied Energy, Elsevier, vol. 210(C), pages 974-986.
    2. Feng, Wei & Jin, Ming & Liu, Xu & Bao, Yi & Marnay, Chris & Yao, Cheng & Yu, Jiancheng, 2018. "A review of microgrid development in the United States – A decade of progress on policies, demonstrations, controls, and software tools," Applied Energy, Elsevier, vol. 228(C), pages 1656-1668.
    3. Schramm, Michael P. & Bevelhimer, Mark S. & DeRolph, Chris R., 2016. "A synthesis of environmental and recreational mitigation requirements at hydropower projects in the United States," Environmental Science & Policy, Elsevier, vol. 61(C), pages 87-96.
    4. Fodhil, F. & Hamidat, A. & Nadjemi, O., 2019. "Potential, optimization and sensitivity analysis of photovoltaic-diesel-battery hybrid energy system for rural electrification in Algeria," Energy, Elsevier, vol. 169(C), pages 613-624.
    5. Li, Chong & Ge, Xinfeng & Zheng, Yuan & Xu, Chang & Ren, Yan & Song, Chenguang & Yang, Chunxia, 2013. "Techno-economic feasibility study of autonomous hybrid wind/PV/battery power system for a household in Urumqi, China," Energy, Elsevier, vol. 55(C), pages 263-272.
    6. Jessica Jewell & Vadim Vinichenko & Lola Nacke & Aleh Cherp, 2019. "Prospects for powering past coal," Nature Climate Change, Nature, vol. 9(8), pages 592-597, August.
    7. Shakoor, Rabia & Hassan, Mohammad Yusri & Raheem, Abdur & Rasheed, Nadia, 2016. "Wind farm layout optimization using area dimensions and definite point selection techniques," Renewable Energy, Elsevier, vol. 88(C), pages 154-163.
    8. Graça Gomes, João & Medeiros Pinto, José & Xu, Huijin & Zhao, Changying & Hashim, Haslenda, 2020. "Modeling and planning of the electricity energy system with a high share of renewable supply for Portugal," Energy, Elsevier, vol. 211(C).
    9. Wang, Luhao & Li, Qiqiang & Ding, Ran & Sun, Mingshun & Wang, Guirong, 2017. "Integrated scheduling of energy supply and demand in microgrids under uncertainty: A robust multi-objective optimization approach," Energy, Elsevier, vol. 130(C), pages 1-14.
    10. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    11. Fekri, Mohammad Navid & Patel, Harsh & Grolinger, Katarina & Sharma, Vinay, 2021. "Deep learning for load forecasting with smart meter data: Online Adaptive Recurrent Neural Network," Applied Energy, Elsevier, vol. 282(PA).
    12. Bullich-Massagué, Eduard & Cifuentes-García, Francisco-Javier & Glenny-Crende, Ignacio & Cheah-Mañé, Marc & Aragüés-Peñalba, Mònica & Díaz-González, Francisco & Gomis-Bellmunt, Oriol, 2020. "A review of energy storage technologies for large scale photovoltaic power plants," Applied Energy, Elsevier, vol. 274(C).
    13. Maryam Arbabzadeh & Ramteen Sioshansi & Jeremiah X. Johnson & Gregory A. Keoleian, 2019. "Author Correction: The role of energy storage in deep decarbonization of electricity production," Nature Communications, Nature, vol. 10(1), pages 1-1, December.
    14. Maryam Arbabzadeh & Ramteen Sioshansi & Jeremiah X. Johnson & Gregory A. Keoleian, 2019. "The role of energy storage in deep decarbonization of electricity production," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    15. Costa-Campi, Maria Teresa & Daví-Arderius, Daniel & Trujillo-Baute, Elisa, 2018. "The economic impact of electricity losses," Energy Economics, Elsevier, vol. 75(C), pages 309-322.
    16. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    17. Barbaro, Marco & Castro, Rui, 2020. "Design optimisation for a hybrid renewable microgrid: Application to the case of Faial island, Azores archipelago," Renewable Energy, Elsevier, vol. 151(C), pages 434-445.
    18. Neves, Diana & Silva, Carlos A., 2014. "Modeling the impact of integrating solar thermal systems and heat pumps for domestic hot water in electric systems – The case study of Corvo Island," Renewable Energy, Elsevier, vol. 72(C), pages 113-124.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahdy, Ahmed & Hasanien, Hany M. & Helmy, Waleed & Turky, Rania A. & Abdel Aleem, Shady H.E., 2022. "Transient stability improvement of wave energy conversion systems connected to power grid using anti-windup-coot optimization strategy," Energy, Elsevier, vol. 245(C).
    2. Mitul Ranjan Chakraborty & Subhojit Dawn & Pradip Kumar Saha & Jayanta Bhusan Basu & Taha Selim Ustun, 2022. "System Profit Improvement of a Thermal–Wind–CAES Hybrid System Considering Imbalance Cost in the Electricity Market," Energies, MDPI, vol. 15(24), pages 1-25, December.
    3. Henning Meschede & Paul Bertheau & Siavash Khalili & Christian Breyer, 2022. "A review of 100% renewable energy scenarios on islands," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(6), November.
    4. Lin, Zhiyi & Song, Chunyue & Zhao, Jun & Yin, Huan, 2022. "Improved approximate dynamic programming for real-time economic dispatch of integrated microgrids," Energy, Elsevier, vol. 255(C).
    5. Urbano, Eva M. & Martinez-Viol, Victor & Kampouropoulos, Konstantinos & Romeral, Luis, 2022. "Risk assessment of energy investment in the industrial framework – Uncertainty and Sensitivity Analysis for energy design and operation optimisation," Energy, Elsevier, vol. 239(PA).
    6. Seyedvahid Vakili & Alessandro Schönborn & Aykut I. Ölçer, 2022. "Application of the transdisciplinary shipyard energy management framework by employing a fuzzy multiple attribute group decision making technique toward a sustainable shipyard: case study for a Bangla," Journal of Shipping and Trade, Springer, vol. 7(1), pages 1-28, December.
    7. Zandrazavi, Seyed Farhad & Guzman, Cindy Paola & Pozos, Alejandra Tabares & Quiros-Tortos, Jairo & Franco, John Fredy, 2022. "Stochastic multi-objective optimal energy management of grid-connected unbalanced microgrids with renewable energy generation and plug-in electric vehicles," Energy, Elsevier, vol. 241(C).
    8. Poyyamozhi, N. & Kumar, S. Senthil & Kumar, R. Ashok & Soundararajan, Gopinath, 2024. "An investigation into enhancing energy storage capacity of solar ponds integrated with nanoparticles through PCM coupling and RSM optimization," Renewable Energy, Elsevier, vol. 221(C).
    9. Qian Zhang & Lisheng Wei & Benben Yang, 2022. "Research on Improved BBO Algorithm and Its Application in Optimal Scheduling of Micro-Grid," Mathematics, MDPI, vol. 10(16), pages 1-18, August.
    10. Shen, Xiaojun & Li, Xingyi & Yuan, Jiahai & Jin, Yu, 2022. "A hydrogen-based zero-carbon microgrid demonstration in renewable-rich remote areas: System design and economic feasibility," Applied Energy, Elsevier, vol. 326(C).
    11. Jann Michael Weinand & Maximilian Hoffmann & Jan Gopfert & Tom Terlouw & Julian Schonau & Patrick Kuckertz & Russell McKenna & Leander Kotzur & Jochen Lin{ss}en & Detlef Stolten, 2022. "Global LCOEs of decentralized off-grid renewable energy systems," Papers 2212.12742, arXiv.org, revised Mar 2023.
    12. Chen, Maozhi & Lu, Hao & Chang, Xiqiang & Liao, Haiyan, 2023. "An optimization on an integrated energy system of combined heat and power, carbon capture system and power to gas by considering flexible load," Energy, Elsevier, vol. 273(C).
    13. Frković, Lovro & Ćosić, Boris & Pukšec, Tomislav & Vladimir, Nikola, 2022. "The synergy between the photovoltaic power systems and battery-powered electric ferries in the isolated energy system of an island," Energy, Elsevier, vol. 259(C).
    14. Fathy, Ahmed & Ferahtia, Seydali & Rezk, Hegazy & Yousri, Dalia & Abdelkareem, Mohammad Ali & Olabi, A.G., 2022. "Optimal adaptive fuzzy management strategy for fuel cell-based DC microgrid," Energy, Elsevier, vol. 247(C).
    15. Brumana, Giovanni & Franchini, Giuseppe & Ghirardi, Elisa & Perdichizzi, Antonio, 2022. "Techno-economic optimization of hybrid power generation systems: A renewables community case study," Energy, Elsevier, vol. 246(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Renzhi & Bai, Ruichang & Ding, Yuemin & Wei, Min & Jiang, Junhui & Sun, Mingyang & Xiao, Feng & Zhang, Hai-Tao, 2021. "A hybrid deep learning-based online energy management scheme for industrial microgrid," Applied Energy, Elsevier, vol. 304(C).
    2. Juran Noh & Hieu A. Doan & Heather Job & Lily A. Robertson & Lu Zhang & Rajeev S. Assary & Karl Mueller & Vijayakumar Murugesan & Yangang Liang, 2024. "An integrated high-throughput robotic platform and active learning approach for accelerated discovery of optimal electrolyte formulations," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Schauf, Magnus & Schwenen, Sebastian, 2023. "System price dynamics for battery storage," Energy Policy, Elsevier, vol. 183(C).
    4. Frischmuth, Felix & Härtel, Philipp, 2022. "Hydrogen sourcing strategies and cross-sectoral flexibility trade-offs in net-neutral energy scenarios for Europe," Energy, Elsevier, vol. 238(PB).
    5. Jun Dong & Yuanyuan Wang & Xihao Dou & Zhengpeng Chen & Yaoyu Zhang & Yao Liu, 2021. "Research on Decision Optimization Model of Microgrid Participating in Spot Market Transaction," Sustainability, MDPI, vol. 13(12), pages 1-26, June.
    6. Dan Tong & David J. Farnham & Lei Duan & Qiang Zhang & Nathan S. Lewis & Ken Caldeira & Steven J. Davis, 2021. "Geophysical constraints on the reliability of solar and wind power worldwide," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    7. Fachrizal Aksan & Yang Li & Vishnu Suresh & Przemysław Janik, 2023. "Multistep Forecasting of Power Flow Based on LSTM Autoencoder: A Study Case in Regional Grid Cluster Proposal," Energies, MDPI, vol. 16(13), pages 1-20, June.
    8. Guangsheng Pan & Qinran Hu & Wei Gu & Shixing Ding & Haifeng Qiu & Yuping Lu, 2021. "Assessment of plum rain’s impact on power system emissions in Yangtze-Huaihe River basin of China," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    9. Laxmi Gupta & Ravi Shankar, 2022. "Adoption of Battery Management System in Utility Grid: An Empirical Study Using Structural Equation Modeling," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 23(4), pages 573-596, December.
    10. Liebensteiner, Mario & Haxhimusa, Adhurim & Naumann, Fabian, 2023. "Subsidized renewables’ adverse effect on energy storage and carbon pricing as a potential remedy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    11. Sánchez-Pérez, P.A. & Staadecker, Martin & Szinai, Julia & Kurtz, Sarah & Hidalgo-Gonzalez, Patricia, 2022. "Effect of modeled time horizon on quantifying the need for long-duration storage," Applied Energy, Elsevier, vol. 317(C).
    12. Lian, Yicheng & Li, Yuanzheng & Zhao, Yong & Yu, Chaofan & Zhao, Tianyang & Wu, Lei, 2023. "Robust multi-objective optimization for islanded data center microgrid operations," Applied Energy, Elsevier, vol. 330(PB).
    13. Ricks, Wilson & Norbeck, Jack & Jenkins, Jesse, 2022. "The value of in-reservoir energy storage for flexible dispatch of geothermal power," Applied Energy, Elsevier, vol. 313(C).
    14. Xia, Tian & Li, Yaowang & Zhang, Ning & Kang, Chongqing, 2022. "Role of compressed air energy storage in urban integrated energy systems with increasing wind penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    15. Ruixue Liu & Guannan He & Xizhe Wang & Dharik Mallapragada & Hongbo Zhao & Yang Shao-Horn & Benben Jiang, 2024. "A cross-scale framework for evaluating flexibility values of battery and fuel cell electric vehicles," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Yuan, Meng & Sorknæs, Peter & Lund, Henrik & Liang, Yongtu, 2022. "The bidding strategies of large-scale battery storage in 100% renewable smart energy systems," Applied Energy, Elsevier, vol. 326(C).
    17. Chen, Qi & Kuang, Zhonghong & Liu, Xiaohua & Zhang, Tao, 2022. "Energy storage to solve the diurnal, weekly, and seasonal mismatch and achieve zero-carbon electricity consumption in buildings," Applied Energy, Elsevier, vol. 312(C).
    18. Côté, Elizabeth & Salm, Sarah, 2022. "Risk-adjusted preferences of utility companies and institutional investors for battery storage and green hydrogen investment," Energy Policy, Elsevier, vol. 163(C).
    19. Gunther Glenk & Stefan Reichelstein, 2022. "Reversible Power-to-Gas systems for energy conversion and storage," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    20. Uddin, Moslem & Mo, Huadong & Dong, Daoyi & Elsawah, Sondoss, 2023. "Techno-economic potential of multi-energy community microgrid: The perspective of Australia," Renewable Energy, Elsevier, vol. 219(P2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:234:y:2021:i:c:s0360544221014584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.