IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v221y2024ics0960148123016488.html
   My bibliography  Save this article

An investigation into enhancing energy storage capacity of solar ponds integrated with nanoparticles through PCM coupling and RSM optimization

Author

Listed:
  • Poyyamozhi, N.
  • Kumar, S. Senthil
  • Kumar, R. Ashok
  • Soundararajan, Gopinath

Abstract

Solar energy is a promising renewable resource for meeting energy demands, with solar pond systems offering efficient thermal energy storage. Integrating Phase Change Materials (PCMs) and nanoparticles into solar ponds has shown potential to enhance energy storage capacity and thermal performance. This study focuses on optimizing the energy storage capacity of a solar pond system by employing Response Surface Methodology (RSM) to analyze the combined effects of PCM and nanoparticles integration. As input parameters for the optimization process, variables such as pond depth, salinity gradient, insulating materials, and solar radiation were taken into account. To maximize energy collecting and storage efficiency, the goal was to determine the ideal combination of these characteristics. To optimize the temperature distribution, Taguchi's L13 orthogonal array method and ANOVA were used. The results of the study indicate that the solar pond configurations with AgTiO2/Paraffin wax and CNT/Paraffin wax exhibited significantly higher energy storage capacities compared to the plain paraffin wax solar pond. Specifically, the AgTiO2/Paraffin wax solar pond showed an energy storage capacity increase of 7.48⁒, while the CNT/Paraffin wax solar pond exhibited an increase of 3.82⁒, in comparison to the plain paraffin wax solar pond. These findings highlight the substantial improvements in energy storage achieved by incorporating nanoparticles (AgTiO2 and CNT) into the paraffin wax as phase change materials within the solar pond system. The optimization study's findings showed that solar pond system performance has significantly improved.

Suggested Citation

  • Poyyamozhi, N. & Kumar, S. Senthil & Kumar, R. Ashok & Soundararajan, Gopinath, 2024. "An investigation into enhancing energy storage capacity of solar ponds integrated with nanoparticles through PCM coupling and RSM optimization," Renewable Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123016488
    DOI: 10.1016/j.renene.2023.119733
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123016488
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119733?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Nimr, Moh'd A. & Al-Dafaie, Ameer Mohammed Abbas, 2014. "Using nanofluids in enhancing the performance of a novel two-layer solar pond," Energy, Elsevier, vol. 68(C), pages 318-326.
    2. Liu, Zhen-Hua & Guan, Hong-Yang & Wang, Guo-Shan, 2014. "Performance optimization study on an integrated solar desalination system with multi-stage evaporation/heat recovery processes," Energy, Elsevier, vol. 76(C), pages 1001-1010.
    3. Graça Gomes, J. & Xu, H.J. & Yang, Q. & Zhao, C.Y., 2021. "An optimization study on a typical renewable microgrid energy system with energy storage," Energy, Elsevier, vol. 234(C).
    4. Tahat, M. A. & Kodah, Z. H. & Probert, S. D. & Al-Tahaineh, H., 2000. "Performance of a portable mini solar-pond," Applied Energy, Elsevier, vol. 66(4), pages 299-310, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amirifard, Masoumeh & Kasaeian, Alibakhsh & Amidpour, Majid, 2018. "Integration of a solar pond with a latent heat storage system," Renewable Energy, Elsevier, vol. 125(C), pages 682-693.
    2. Fathy, Ahmed & Ferahtia, Seydali & Rezk, Hegazy & Yousri, Dalia & Abdelkareem, Mohammad Ali & Olabi, A.G., 2022. "Optimal adaptive fuzzy management strategy for fuel cell-based DC microgrid," Energy, Elsevier, vol. 247(C).
    3. Brumana, Giovanni & Franchini, Giuseppe & Ghirardi, Elisa & Perdichizzi, Antonio, 2022. "Techno-economic optimization of hybrid power generation systems: A renewables community case study," Energy, Elsevier, vol. 246(C).
    4. Mahdy, Ahmed & Hasanien, Hany M. & Helmy, Waleed & Turky, Rania A. & Abdel Aleem, Shady H.E., 2022. "Transient stability improvement of wave energy conversion systems connected to power grid using anti-windup-coot optimization strategy," Energy, Elsevier, vol. 245(C).
    5. Urbano, Eva M. & Martinez-Viol, Victor & Kampouropoulos, Konstantinos & Romeral, Luis, 2022. "Risk assessment of energy investment in the industrial framework – Uncertainty and Sensitivity Analysis for energy design and operation optimisation," Energy, Elsevier, vol. 239(PA).
    6. Shen, Xiaojun & Li, Xingyi & Yuan, Jiahai & Jin, Yu, 2022. "A hydrogen-based zero-carbon microgrid demonstration in renewable-rich remote areas: System design and economic feasibility," Applied Energy, Elsevier, vol. 326(C).
    7. Solangi, K.H. & Kazi, S.N. & Luhur, M.R. & Badarudin, A. & Amiri, A. & Sadri, Rad & Zubir, M.N.M. & Gharehkhani, Samira & Teng, K.H., 2015. "A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids," Energy, Elsevier, vol. 89(C), pages 1065-1086.
    8. Anagnostopoulos, Argyrios & Sebastia-Saez, Daniel & Campbell, Alasdair N. & Arellano-Garcia, Harvey, 2020. "Finite element modelling of the thermal performance of salinity gradient solar ponds," Energy, Elsevier, vol. 203(C).
    9. Manikandan, S. & Rajan, K.S., 2016. "Sand-propylene glycol-water nanofluids for improved solar energy collection," Energy, Elsevier, vol. 113(C), pages 917-929.
    10. Khalilian, Morteza & Pourmokhtar, Hamed & Roshan, Ashkan, 2018. "Effect of heat extraction mode on the overall energy and exergy efficiencies of the solar ponds: A transient study," Energy, Elsevier, vol. 154(C), pages 27-37.
    11. Lin, Zhiyi & Song, Chunyue & Zhao, Jun & Yin, Huan, 2022. "Improved approximate dynamic programming for real-time economic dispatch of integrated microgrids," Energy, Elsevier, vol. 255(C).
    12. Huang, Jian & He, Yurong & Chen, Meijie & Wang, Xinzhi, 2019. "Separating photo-thermal conversion and steam generation process for evaporation enhancement using a solar absorber," Applied Energy, Elsevier, vol. 236(C), pages 244-252.
    13. Chen, Maozhi & Lu, Hao & Chang, Xiqiang & Liao, Haiyan, 2023. "An optimization on an integrated energy system of combined heat and power, carbon capture system and power to gas by considering flexible load," Energy, Elsevier, vol. 273(C).
    14. Kurt, Hüseyin & Ozkaymak, Mehmet & Binark, A. Korhan, 2006. "Experimental and numerical analysis of sodium-carbonate salt gradient solar-pond performance under simulated solar-radiation," Applied Energy, Elsevier, vol. 83(4), pages 324-342, April.
    15. Ould Dah, M.M. & Ouni, M. & Guizani, A. & Belghith, A., 2010. "The influence of the heat extraction mode on the performance and stability of a mini solar pond," Applied Energy, Elsevier, vol. 87(10), pages 3005-3010, October.
    16. Mitul Ranjan Chakraborty & Subhojit Dawn & Pradip Kumar Saha & Jayanta Bhusan Basu & Taha Selim Ustun, 2022. "System Profit Improvement of a Thermal–Wind–CAES Hybrid System Considering Imbalance Cost in the Electricity Market," Energies, MDPI, vol. 15(24), pages 1-25, December.
    17. Frković, Lovro & Ćosić, Boris & Pukšec, Tomislav & Vladimir, Nikola, 2022. "The synergy between the photovoltaic power systems and battery-powered electric ferries in the isolated energy system of an island," Energy, Elsevier, vol. 259(C).
    18. Manikandan, S. & Rajan, K.S., 2015. "MgO-Therminol 55 nanofluids for efficient energy management: Analysis of transient heat transfer performance," Energy, Elsevier, vol. 88(C), pages 408-416.
    19. Velmurugan, V. & Srithar, K., 2008. "Prospects and scopes of solar pond: A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2253-2263, October.
    20. Seyedvahid Vakili & Alessandro Schönborn & Aykut I. Ölçer, 2022. "Application of the transdisciplinary shipyard energy management framework by employing a fuzzy multiple attribute group decision making technique toward a sustainable shipyard: case study for a Bangla," Journal of Shipping and Trade, Springer, vol. 7(1), pages 1-28, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:221:y:2024:i:c:s0960148123016488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.