IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v163y2022ics0301421522000465.html
   My bibliography  Save this article

Risk-adjusted preferences of utility companies and institutional investors for battery storage and green hydrogen investment

Author

Listed:
  • Côté, Elizabeth
  • Salm, Sarah

Abstract

Achieving climate-neutrality requires considerable investment in energy storage systems (ESS) to integrate variable renewable energy sources into the grid. However, investments into ESS are often unprofitable, in particular for grid-scale battery storage and green hydrogen technologies, prompting many actors to call for policy intervention. This study investigates investor-specific risk-return preferences for ESS investment and derives policy recommendations. Insights are drawn from 1,605 experimental investment-related decisions obtained from 42 high-level institutional investors and utility representatives. Results reveal that both investor groups view revenue stacking as key to making ESS investment viable. While the expected return on investment is the most important project characteristic, risk-return preferences for other features diverge between groups. Institutional investors appear more open to exploring new technological ventures (20% of utility respondents would not consider making investments into solar photovoltaic-hydrogen), whereas utilities seem to prefer greenfield projects (23% of surveyed institutional investors rejected such projects). Interestingly, both groups show strong aversion towards energy market price risk. Institutional investors require a premium of 6.87 percentage points and utilities 5.54 percentage points for moving from a position of fully hedged against market price risk to a scenario where only 20% of revenue is fixed, underlining the need for policy support.

Suggested Citation

  • Côté, Elizabeth & Salm, Sarah, 2022. "Risk-adjusted preferences of utility companies and institutional investors for battery storage and green hydrogen investment," Energy Policy, Elsevier, vol. 163(C).
  • Handle: RePEc:eee:enepol:v:163:y:2022:i:c:s0301421522000465
    DOI: 10.1016/j.enpol.2022.112821
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421522000465
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2022.112821?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:aen:journl:eeep3_2_03egerer is not listed on IDEAS
    2. Gunther Glenk & Stefan Reichelstein, 2019. "Publisher Correction: Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(4), pages 347-347, April.
    3. McFadden, Daniel, 1980. "Econometric Models for Probabilistic Choice among Products," The Journal of Business, University of Chicago Press, vol. 53(3), pages 13-29, July.
    4. Gaudard, Ludovic & Madani, Kaveh, 2019. "Energy storage race: Has the monopoly of pumped-storage in Europe come to an end?," Energy Policy, Elsevier, vol. 126(C), pages 22-29.
    5. Vithala R. Rao, 2014. "Applied Conjoint Analysis," Springer Books, Springer, edition 127, number 978-3-540-87753-0, October.
    6. Liu, Wei & Zhang, Zhixin & Chen, Jie & Jiang, Deyi & Wu, Fei & Fan, Jinyang & Li, Yinping, 2020. "Feasibility evaluation of large-scale underground hydrogen storage in bedded salt rocks of China: A case study in Jiangsu province," Energy, Elsevier, vol. 198(C).
    7. Mukherjee, Ushnik & Walker, Sean & Maroufmashat, Azadeh & Fowler, Michael & Elkamel, Ali, 2017. "Development of a pricing mechanism for valuing ancillary, transportation and environmental services offered by a power to gas energy system," Energy, Elsevier, vol. 128(C), pages 447-462.
    8. Huang, Qisheng & Xu, Yunjian & Courcoubetis, Costas, 2020. "Stackelberg competition between merchant and regulated storage investment in wholesale electricity markets," Applied Energy, Elsevier, vol. 264(C).
    9. Lin, Boqiang & Wu, Wei, 2017. "Economic viability of battery energy storage and grid strategy: A special case of China electricity market," Energy, Elsevier, vol. 124(C), pages 423-434.
    10. Gunther Glenk & Stefan Reichelstein, 2019. "Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(3), pages 216-222, March.
    11. Melliger, Marc & Lilliestam, Johan, 2021. "Effects of coordinating support policy changes on renewable power investor choices in Europe," Energy Policy, Elsevier, vol. 148(PB).
    12. Steffen, Bjarne & Weber, Christoph, 2013. "Efficient storage capacity in power systems with thermal and renewable generation," Energy Economics, Elsevier, vol. 36(C), pages 556-567.
    13. Petkov, Ivalin & Gabrielli, Paolo, 2020. "Power-to-hydrogen as seasonal energy storage: an uncertainty analysis for optimal design of low-carbon multi-energy systems," Applied Energy, Elsevier, vol. 274(C).
    14. Loock, Moritz, 2012. "Going beyond best technology and lowest price: on renewable energy investors’ preference for service-driven business models," Energy Policy, Elsevier, vol. 40(C), pages 21-27.
    15. Maryam Arbabzadeh & Ramteen Sioshansi & Jeremiah X. Johnson & Gregory A. Keoleian, 2019. "Author Correction: The role of energy storage in deep decarbonization of electricity production," Nature Communications, Nature, vol. 10(1), pages 1-1, December.
    16. Sinsel, Simon R. & Riemke, Rhea L. & Hoffmann, Volker H., 2020. "Challenges and solution technologies for the integration of variable renewable energy sources—a review," Renewable Energy, Elsevier, vol. 145(C), pages 2271-2285.
    17. Blondiau, Yuliya & Reuter, Emmanuelle, 2019. "Why is the grass greener on the other side? Decision modes and location choice by wind energy investors," Journal of Business Research, Elsevier, vol. 102(C), pages 44-55.
    18. Kelvin J. Lancaster, 1966. "A New Approach to Consumer Theory," Journal of Political Economy, University of Chicago Press, vol. 74(2), pages 132-132.
    19. Karhinen, S. & Huuki, H., 2019. "Private and social benefits of a pumped hydro energy storage with increasing amount of wind power," Energy Economics, Elsevier, vol. 81(C), pages 942-959.
    20. Egli, Florian, 2020. "Renewable energy investment risk: An investigation of changes over time and the underlying drivers," Energy Policy, Elsevier, vol. 140(C).
    21. Ming, Zeng & Junjie, Feng & Song, Xue & Zhijie, Wang & Xiaoli, Zhu & Yuejin, Wang, 2013. "Development of China's pumped storage plant and related policy analysis," Energy Policy, Elsevier, vol. 61(C), pages 104-113.
    22. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    23. Helms, Thorsten, 2016. "Asset transformation and the challenges to servitize a utility business model," Energy Policy, Elsevier, vol. 91(C), pages 98-112.
    24. Lombardi, P. & Schwabe, F., 2017. "Sharing economy as a new business model for energy storage systems," Applied Energy, Elsevier, vol. 188(C), pages 485-496.
    25. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    26. Thorsten Helms & Sarah Salm & Rolf Wüstenhagen, 2020. "Investor-Specific Cost of Capital and Renewable Energy Investment Decisions," World Scientific Book Chapters, in: Charles W Donovan (ed.), RENEWABLE ENERGY FINANCE Funding the Future of Energy, chapter 5, pages 85-111, World Scientific Publishing Co. Pte. Ltd..
    27. McInerney, Celine & Bunn, Derek W., 2019. "Expansion of the investor base for the energy transition," Energy Policy, Elsevier, vol. 129(C), pages 1240-1244.
    28. Jonas Egerer and Wolf-Peter Schill, 2014. "Power System Transformation toward Renewables: Investment Scenarios for Germany," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    29. repec:cup:cbooks:9780521788304 is not listed on IDEAS
    30. Connolly, D. & Lund, H. & Finn, P. & Mathiesen, B.V. & Leahy, M., 2011. "Practical operation strategies for pumped hydroelectric energy storage (PHES) utilising electricity price arbitrage," Energy Policy, Elsevier, vol. 39(7), pages 4189-4196, July.
    31. Martins, Jason & Miles, John, 2021. "A techno-economic assessment of battery business models in the UK electricity market," Energy Policy, Elsevier, vol. 148(PB).
    32. Ibrahim, H. & Ilinca, A. & Perron, J., 2008. "Energy storage systems--Characteristics and comparisons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1221-1250, June.
    33. Ländner, Eva-Maria & Märtz, Alexandra & Schöpf, Michael & Weibelzahl, Martin, 2019. "From energy legislation to investment determination: Shaping future electricity markets with different flexibility options," Energy Policy, Elsevier, vol. 129(C), pages 1100-1110.
    34. Salm, Sarah & Wüstenhagen, Rolf, 2018. "Dream team or strange bedfellows? Complementarities and differences between incumbent energy companies and institutional investors in Swiss hydropower," Energy Policy, Elsevier, vol. 121(C), pages 476-487.
    35. Botta, Enrico, 2019. "An experimental approach to climate finance: the impact of auction design and policy uncertainty on renewable energy equity costs in Europe," Energy Policy, Elsevier, vol. 133(C).
    36. Yu, Nanpeng & Foggo, Brandon, 2017. "Stochastic valuation of energy storage in wholesale power markets," Energy Economics, Elsevier, vol. 64(C), pages 177-185.
    37. Petrovich, Beatrice & Hille, Stefanie Lena & Wüstenhagen, Rolf, 2019. "Beauty and the budget: A segmentation of residential solar adopters," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    38. Maryam Arbabzadeh & Ramteen Sioshansi & Jeremiah X. Johnson & Gregory A. Keoleian, 2019. "The role of energy storage in deep decarbonization of electricity production," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    39. Vorushylo, I. & Keatley, P. & Hewitt, NJ, 2016. "Most promising flexible generators for the wind dominated market," Energy Policy, Elsevier, vol. 96(C), pages 564-575.
    40. Michel Noussan & Pier Paolo Raimondi & Rossana Scita & Manfred Hafner, 2020. "The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective," Sustainability, MDPI, vol. 13(1), pages 1-26, December.
    41. Boffino, Luigi & Conejo, Antonio J. & Sioshansi, Ramteen & Oggioni, Giorgia, 2019. "A two-stage stochastic optimization planning framework to decarbonize deeply electric power systems," Energy Economics, Elsevier, vol. 84(C).
    42. Sioshansi, Ramteen & Denholm, Paul & Jenkin, Thomas, 2011. "A comparative analysis of the value of pure and hybrid electricity storage," Energy Economics, Elsevier, vol. 33(1), pages 56-66, January.
    43. Capros, Pantelis & Zazias, Georgios & Evangelopoulou, Stavroula & Kannavou, Maria & Fotiou, Theofano & Siskos, Pelopidas & De Vita, Alessia & Sakellaris, Konstantinos, 2019. "Energy-system modelling of the EU strategy towards climate-neutrality," Energy Policy, Elsevier, vol. 134(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Chengzhe & Zhang, Libo & Wang, Qunwei & Zhou, Dequn, 2024. "Towards low-carbon steel: System dynamics simulation of policies impact on green hydrogen steelmaking in China and the European Union," Energy Policy, Elsevier, vol. 188(C).
    2. Kim, Ju-Hee & Han, Su-Mi & Yoo, Seung-Hoon, 2023. "Price premium for green hydrogen in South Korea: Evidence from a stated preference study," Renewable Energy, Elsevier, vol. 211(C), pages 647-655.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Côté, Elizabeth & Đukan, Mak & Pons-Seres de Brauwer, Cristian & Wüstenhagen, Rolf, 2022. "The price of actor diversity: Measuring project developers’ willingness to accept risks in renewable energy auctions," Energy Policy, Elsevier, vol. 163(C).
    2. Zhang, Xiong & Liu, Wei & Jiang, Deyi & Qiao, Weibiao & Liu, Enbin & Zhang, Nan & Fan, Jinyang, 2021. "Investigation on the influences of interlayer contents on stability and usability of energy storage caverns in bedded rock salt," Energy, Elsevier, vol. 231(C).
    3. Wyrwa, Artur & Suwała, Wojciech & Pluta, Marcin & Raczyński, Maciej & Zyśk, Janusz & Tokarski, Stanisław, 2022. "A new approach for coupling the short- and long-term planning models to design a pathway to carbon neutrality in a coal-based power system," Energy, Elsevier, vol. 239(PE).
    4. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    5. Côté, Elizabeth & Pons-Seres de Brauwer, Cristian, 2023. "Preferences of homeowners for heat-pump leasing: Evidence from a choice experiment in France, Germany, and Switzerland," Energy Policy, Elsevier, vol. 183(C).
    6. Gunther Glenk & Stefan Reichelstein, 2022. "Reversible Power-to-Gas systems for energy conversion and storage," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Ma, Huan & Sun, Qinghan & Chen, Lei & Chen, Qun & Zhao, Tian & He, Kelun & Xu, Fei & Min, Yong & Wang, Shunjiang & Zhou, Guiping, 2023. "Cogeneration transition for energy system decarbonization: From basic to flexible and complementary multi-energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    8. Salm, Sarah & Wüstenhagen, Rolf, 2018. "Dream team or strange bedfellows? Complementarities and differences between incumbent energy companies and institutional investors in Swiss hydropower," Energy Policy, Elsevier, vol. 121(C), pages 476-487.
    9. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    10. Shaojie Song & Haiyang Lin & Peter Sherman & Xi Yang & Chris P. Nielsen & Xinyu Chen & Michael B. McElroy, 2021. "Production of hydrogen from offshore wind in China and cost-competitive supply to Japan," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    11. Loisel, Rodica & Simon, Corentin, 2021. "Market strategies for large-scale energy storage: Vertical integration versus stand-alone player," Energy Policy, Elsevier, vol. 151(C).
    12. Sánchez-Pérez, P.A. & Staadecker, Martin & Szinai, Julia & Kurtz, Sarah & Hidalgo-Gonzalez, Patricia, 2022. "Effect of modeled time horizon on quantifying the need for long-duration storage," Applied Energy, Elsevier, vol. 317(C).
    13. Zainal, Bidattul Syirat & Ker, Pin Jern & Mohamed, Hassan & Ong, Hwai Chyuan & Fattah, I.M.R. & Rahman, S.M. Ashrafur & Nghiem, Long D. & Mahlia, T M Indra, 2024. "Recent advancement and assessment of green hydrogen production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    14. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    15. Yuan, Meng & Sorknæs, Peter & Lund, Henrik & Liang, Yongtu, 2022. "The bidding strategies of large-scale battery storage in 100% renewable smart energy systems," Applied Energy, Elsevier, vol. 326(C).
    16. Kondziella, Hendrik & Bruckner, Thomas, 2016. "Flexibility requirements of renewable energy based electricity systems – a review of research results and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 10-22.
    17. Ruhnau, Oliver & Schiele, Johanna, 2023. "Flexible green hydrogen: The effect of relaxing simultaneity requirements on project design, economics, and power sector emissions," Energy Policy, Elsevier, vol. 182(C).
    18. Jafari, Mehdi & Botterud, Audun & Sakti, Apurba, 2022. "Decarbonizing power systems: A critical review of the role of energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    19. Melliger, Marc & Lilliestam, Johan, 2021. "Effects of coordinating support policy changes on renewable power investor choices in Europe," Energy Policy, Elsevier, vol. 148(PB).
    20. Bucksteeg, Michael & Mikurda, Jennifer & Weber, Christoph, 2023. "Integration of power-to-gas into electricity markets during the ramp-up phase—Assessing the role of carbon pricing," Energy Economics, Elsevier, vol. 124(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:163:y:2022:i:c:s0301421522000465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.