IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v171y2023ics1364032122008711.html
   My bibliography  Save this article

Subsidized renewables’ adverse effect on energy storage and carbon pricing as a potential remedy

Author

Listed:
  • Liebensteiner, Mario
  • Haxhimusa, Adhurim
  • Naumann, Fabian

Abstract

Large-scale energy storage is viewed as a key complementary technology in a power system fed by a large share of intermittent renewable energies (RE). However, subsidies for RE – a well-intended market intervention – may distort price signals, thereby adversely undermining the profitability of energy storages, and thus, adequate investment incentives. This study provides novel causal estimates supporting this notion, using an econometric instrumental-variables framework and data on Austrian pumped storages, operating in the German–Austrian electricity market, characterized by a large share of generously subsidized RE. The findings show that RE significantly depress storage profitability and that further deployment of RE will intensify this effect. This may pose an obstacle against adequate investment in bulk energy storage capacity. Moreover, the results indicate that intensifying carbon pricing would significantly counteract the problem via a market-based price signal. This study contributes to the general debate on the design and effects of environmental regulation and particularly shows that a non-market-based policy for a green technology may adversely affect complementary technologies.

Suggested Citation

  • Liebensteiner, Mario & Haxhimusa, Adhurim & Naumann, Fabian, 2023. "Subsidized renewables’ adverse effect on energy storage and carbon pricing as a potential remedy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
  • Handle: RePEc:eee:rensus:v:171:y:2023:i:c:s1364032122008711
    DOI: 10.1016/j.rser.2022.112990
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122008711
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112990?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Natalia Fabra & Mar Reguant, 2014. "Pass-Through of Emissions Costs in Electricity Markets," American Economic Review, American Economic Association, vol. 104(9), pages 2872-2899, September.
    2. Kougias, Ioannis & Szabó, Sándor, 2017. "Pumped hydroelectric storage utilization assessment: Forerunner of renewable energy integration or Trojan horse?," Energy, Elsevier, vol. 140(P1), pages 318-329.
    3. Linn, Joshua & Shih, Jhih-Shyang, 2019. "Do lower electricity storage costs reduce greenhouse gas emissions?," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 130-158.
    4. Kling, Jeffrey R, 2001. "Interpreting Instrumental Variables Estimates of the Returns to Schooling," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 358-364, July.
    5. Würzburg, Klaas & Labandeira, Xavier & Linares, Pedro, 2013. "Renewable generation and electricity prices: Taking stock and new evidence for Germany and Austria," Energy Economics, Elsevier, vol. 40(S1), pages 159-171.
    6. Deb, Rajat, 2000. "Operating Hydroelectric Plants and Pumped Storage Units in a Competitive Environment," The Electricity Journal, Elsevier, vol. 13(3), pages 24-32, April.
    7. Zerrahn, Alexander & Schill, Wolf-Peter & Kemfert, Claudia, 2018. "On the economics of electrical storage for variable renewable energy sources," European Economic Review, Elsevier, vol. 108(C), pages 259-279.
    8. Stephen P. Holland & Erin T. Mansur, 2008. "Is Real-Time Pricing Green? The Environmental Impacts of Electricity Demand Variance," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 550-561, August.
    9. William A. Braff & Joshua M. Mueller & Jessika E. Trancik, 2016. "Value of storage technologies for wind and solar energy," Nature Climate Change, Nature, vol. 6(10), pages 964-969, October.
    10. Koch, Nicolas & Fuss, Sabine & Grosjean, Godefroy & Edenhofer, Ottmar, 2014. "Causes of the EU ETS price drop: Recession, CDM, renewable policies or a bit of everything?—New evidence," Energy Policy, Elsevier, vol. 73(C), pages 676-685.
    11. Sinn, Hans-Werner, 2017. "Buffering volatility: A study on the limits of Germany's energy revolution," European Economic Review, Elsevier, vol. 99(C), pages 130-150.
    12. R. G. Lipsey & Kelvin Lancaster, 1956. "The General Theory of Second Best," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 24(1), pages 11-32.
    13. Liebensteiner, Mario & Wrienz, Matthias, 2020. "Do Intermittent Renewables Threaten the Electricity Supply Security?," Energy Economics, Elsevier, vol. 87(C).
    14. Kevin Novan, 2015. "Valuing the Wind: Renewable Energy Policies and Air Pollution Avoided," American Economic Journal: Economic Policy, American Economic Association, vol. 7(3), pages 291-326, August.
    15. Gugler, Klaus & Haxhimusa, Adhurim & Liebensteiner, Mario, 2021. "Effectiveness of climate policies: Carbon pricing vs. subsidizing renewables," Journal of Environmental Economics and Management, Elsevier, vol. 106(C).
    16. Daniel Rosenbloom & Jochen Markard & Frank W. Geels & Lea Fuenfschilling, 2020. "Opinion: Why carbon pricing is not sufficient to mitigate climate change—and how “sustainability transition policy” can help," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(16), pages 8664-8668, April.
    17. Steven L. Puller, 2007. "Pricing and Firm Conduct in California's Deregulated Electricity Market," The Review of Economics and Statistics, MIT Press, vol. 89(1), pages 75-87, February.
    18. Severin Borenstein, 2012. "The Private and Public Economics of Renewable Electricity Generation," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 67-92, Winter.
    19. Gaudard, Ludovic, 2015. "Pumped-storage project: A short to long term investment analysis including climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 91-99.
    20. Javier López Prol & Wolf-Peter Schill, 2021. "The Economics of Variable Renewable Energy and Electricity Storage," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 443-467, October.
    21. Maryam Arbabzadeh & Ramteen Sioshansi & Jeremiah X. Johnson & Gregory A. Keoleian, 2019. "Author Correction: The role of energy storage in deep decarbonization of electricity production," Nature Communications, Nature, vol. 10(1), pages 1-1, December.
    22. Matti Liski & Iivo Vehviläinen, 2020. "Gone with the Wind? An Empirical Analysis of the Equilibrium Impact of Renewable Energy," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 7(5), pages 873-900.
    23. Carson, Richard T. & Novan, Kevin, 2013. "The private and social economics of bulk electricity storage," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 404-423.
    24. Gugler, Klaus & Haxhimusa, Adhurim & Liebensteiner, Mario & Schindler, Nora, 2020. "Investment opportunities, uncertainty, and renewables in European electricity markets," Energy Economics, Elsevier, vol. 85(C).
    25. James Bushnell & Kevin Novan, 2021. "Setting with the Sun: The Impacts of Renewable Energy on Conventional Generation," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 8(4), pages 759-796.
    26. Maryam Arbabzadeh & Ramteen Sioshansi & Jeremiah X. Johnson & Gregory A. Keoleian, 2019. "The role of energy storage in deep decarbonization of electricity production," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    27. Kverndokk, Snorre & Rosendahl, Knut Einar, 2007. "Climate policies and learning by doing: Impacts and timing of technology subsidies," Resource and Energy Economics, Elsevier, vol. 29(1), pages 58-82, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramos, Helena M. & Sintong, Jeremy E. & Kuriqi, Alban, 2024. "Optimal integration of hybrid pumped storage hydropower toward energy transition," Renewable Energy, Elsevier, vol. 221(C).
    2. Yagi, Chihiro & Takeuchi, Kenji, 2023. "Estimating the value of energy storage: The role of pumped hydropower in the electricity supply network," Japan and the World Economy, Elsevier, vol. 68(C).
    3. Mardones, Cristian, 2023. "Economic and environmental effects of financing subsidies for non-conventional renewable energies with a carbon tax – A comparison of intersectoral models," Renewable Energy, Elsevier, vol. 217(C).
    4. Yan Lu & Xuan Liu & Yan Zhang & Zhiqiao Yang & Yunna Wu, 2023. "Investment Efficiency Assessment Model for Pumped Storage Power Plants Considering Grid Operation Demand under Fuzzy Environment: A Case Study in China," Sustainability, MDPI, vol. 15(11), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liebensteiner, Mario & Naumann, Fabian, 2022. "Can carbon pricing counteract renewable energies’ cannibalization problem?," Energy Economics, Elsevier, vol. 115(C).
    2. Gugler, Klaus & Haxhimusa, Adhurim & Liebensteiner, Mario, 2023. "Carbon pricing and emissions: Causal effects of Britain's carbon tax," Energy Economics, Elsevier, vol. 121(C).
    3. Helm, Carsten & Mier, Mathias, 2021. "Steering the energy transition in a world of intermittent electricity supply: Optimal subsidies and taxes for renewables and storage," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    4. Gugler, Klaus & Haxhimusa, Adhurim & Liebensteiner, Mario, 2021. "Effectiveness of climate policies: Carbon pricing vs. subsidizing renewables," Journal of Environmental Economics and Management, Elsevier, vol. 106(C).
    5. Petersen, Claire & Reguant, Mar & Segura, Lola, 2024. "Measuring the impact of wind power and intermittency," Energy Economics, Elsevier, vol. 129(C).
    6. Fabra, Natalia, 2021. "The energy transition: An industrial economics perspective," International Journal of Industrial Organization, Elsevier, vol. 79(C).
    7. Abrell, Jan & Kosch, Mirjam & Rausch, Sebastian, 2019. "Carbon abatement with renewables: Evaluating wind and solar subsidies in Germany and Spain," Journal of Public Economics, Elsevier, vol. 169(C), pages 172-202.
    8. Yagi, Chihiro & Takeuchi, Kenji, 2023. "Estimating the value of energy storage: The role of pumped hydropower in the electricity supply network," Japan and the World Economy, Elsevier, vol. 68(C).
    9. Graff Zivin, Joshua S. & Kotchen, Matthew J. & Mansur, Erin T., 2014. "Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 248-268.
    10. Jan Abrell & Sebastian Rausch & Clemens Streitberger, 2022. "The Economic and Climate Value of Flexibility in Green Energy Markets," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(2), pages 289-312, October.
    11. Schauf, Magnus & Schwenen, Sebastian, 2023. "System price dynamics for battery storage," Energy Policy, Elsevier, vol. 183(C).
    12. Gugler, Klaus & Haxhimusa, Adhurim, 2019. "Market integration and technology mix: Evidence from the German and French electricity markets," Energy Policy, Elsevier, vol. 126(C), pages 30-46.
    13. Abrell, Jan & Kosch, Mirjam, 2022. "Cross-country spillovers of renewable energy promotion—The case of Germany," Resource and Energy Economics, Elsevier, vol. 68(C).
    14. Dan Tong & David J. Farnham & Lei Duan & Qiang Zhang & Nathan S. Lewis & Ken Caldeira & Steven J. Davis, 2021. "Geophysical constraints on the reliability of solar and wind power worldwide," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    15. Zipp, Alexander, 2017. "The marketability of variable renewable energy in liberalized electricity markets – An empirical analysis," Renewable Energy, Elsevier, vol. 113(C), pages 1111-1121.
    16. Paige Weber & Matt Woerman, 2022. "Intermittency or Uncertainty? Impacts of Renewable Energy in Electricity Markets," CESifo Working Paper Series 9902, CESifo.
    17. Gunther Glenk & Stefan Reichelstein, 2022. "Reversible Power-to-Gas systems for energy conversion and storage," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Paul Lehmann & Jos Sijm & Erik Gawel & Sebastian Strunz & Unnada Chewpreecha & Jean-Francois Mercure & Hector Pollitt, 2019. "Addressing multiple externalities from electricity generation: a case for EU renewable energy policy beyond 2020?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 255-283, April.
    19. Mar Reguant, 2018. "The Efficiency and Sectoral Distributional Implications of Large-Scale Renewable Policies," NBER Working Papers 24398, National Bureau of Economic Research, Inc.
    20. Beltrami, Filippo & Burlinson, Andrew & Giulietti, Monica & Grossi, Luigi & Rowley, Paul & Wilson, Grant, 2020. "Where did the time (series) go? Estimation of marginal emission factors with autoregressive components," Energy Economics, Elsevier, vol. 91(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:171:y:2023:i:c:s1364032122008711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.