IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i12p6577-d571701.html
   My bibliography  Save this article

Research on Decision Optimization Model of Microgrid Participating in Spot Market Transaction

Author

Listed:
  • Jun Dong

    (Department of Economic Management, North China Electric Power University, Beijing 102206, China)

  • Yuanyuan Wang

    (Department of Economic Management, North China Electric Power University, Beijing 102206, China)

  • Xihao Dou

    (Department of Economic Management, North China Electric Power University, Beijing 102206, China)

  • Zhengpeng Chen

    (Department of Economic Management, North China Electric Power University, Beijing 102206, China)

  • Yaoyu Zhang

    (Department of Economic Management, North China Electric Power University, Beijing 102206, China)

  • Yao Liu

    (Department of Economic Management, North China Electric Power University, Beijing 102206, China)

Abstract

The development of electricity spot trading provides an opportunity for microgrids to participate in the spot market transaction, which is of great significance to the research of microgrids participating in the electricity spot market. Under the background of spot market construction, this paper takes the microgrid including wind power, photovoltaic (PV), gas turbine, battery storage, and demand response as the research object, uses the stochastic optimization method to deal with the uncertainty of wind and PV power, and constructs a decision optimization model with the goal of maximizing the expected revenue of microgrids in the spot market. Through the case study, the optimal bidding electricity of microgrid operators in the spot market is obtained, and the revenue is USD 923.07. Then, this paper further investigates the effects of demand response, meteorological factors, market price coefficients, and cost coefficients on the expected revenue of microgrids. The results demonstrate that the demand response adopted in this paper has better social–economic benefits, which can reduce the peak load while ensuring the reliability of the microgrid, and the optimization model also ensure profits while extreme weather and related economic coefficients change, providing a set of scientific quantitative analysis tools for microgrids to trade electricity in the spot market.

Suggested Citation

  • Jun Dong & Yuanyuan Wang & Xihao Dou & Zhengpeng Chen & Yaoyu Zhang & Yao Liu, 2021. "Research on Decision Optimization Model of Microgrid Participating in Spot Market Transaction," Sustainability, MDPI, vol. 13(12), pages 1-26, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6577-:d:571701
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/12/6577/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/12/6577/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Das, Saborni & Basu, Mousumi, 2020. "Day-ahead optimal bidding strategy of microgrid with demand response program considering uncertainties and outages of renewable energy resources," Energy, Elsevier, vol. 190(C).
    2. Li, Zhengmao & Xu, Yan, 2018. "Optimal coordinated energy dispatch of a multi-energy microgrid in grid-connected and islanded modes," Applied Energy, Elsevier, vol. 210(C), pages 974-986.
    3. Zhang, Bingying & Li, Qiqiang & Wang, Luhao & Feng, Wei, 2018. "Robust optimization for energy transactions in multi-microgrids under uncertainty," Applied Energy, Elsevier, vol. 217(C), pages 346-360.
    4. Gomes, I.L.R. & Pousinho, H.M.I. & Melício, R. & Mendes, V.M.F., 2017. "Stochastic coordination of joint wind and photovoltaic systems with energy storage in day-ahead market," Energy, Elsevier, vol. 124(C), pages 310-320.
    5. Peng, Xu & Tao, Xiaoma, 2018. "Cooperative game of electricity retailers in China's spot electricity market," Energy, Elsevier, vol. 145(C), pages 152-170.
    6. Ottesen, Stig Ødegaard & Tomasgard, Asgeir & Fleten, Stein-Erik, 2016. "Prosumer bidding and scheduling in electricity markets," Energy, Elsevier, vol. 94(C), pages 828-843.
    7. Rezaei, Navid & Khazali, Amirhossein & Mazidi, Mohammadreza & Ahmadi, Abdollah, 2020. "Economic energy and reserve management of renewable-based microgrids in the presence of electric vehicle aggregators: A robust optimization approach," Energy, Elsevier, vol. 201(C).
    8. Fazlalipour, Pary & Ehsan, Mehdi & Mohammadi-Ivatloo, Behnam, 2019. "Risk-aware stochastic bidding strategy of renewable micro-grids in day-ahead and real-time markets," Energy, Elsevier, vol. 171(C), pages 689-700.
    9. Davatgaran, Vahid & Saniei, Mohsen & Mortazavi, Seyed Saeidollah, 2018. "Optimal bidding strategy for an energy hub in energy market," Energy, Elsevier, vol. 148(C), pages 482-493.
    10. Wang, Luhao & Li, Qiqiang & Ding, Ran & Sun, Mingshun & Wang, Guirong, 2017. "Integrated scheduling of energy supply and demand in microgrids under uncertainty: A robust multi-objective optimization approach," Energy, Elsevier, vol. 130(C), pages 1-14.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Dong & Yaoyu Zhang & Yuanyuan Wang & Yao Liu, 2021. "A Two-Stage Optimal Dispatching Model for Micro Energy Grid Considering the Dual Goals of Economy and Environmental Protection under CVaR," Sustainability, MDPI, vol. 13(18), pages 1-28, September.
    2. Hongjie Li, 2023. "Power transaction game algorithm with microgrid based on residual regression model," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 18, pages 554-560.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    2. Peng, Feixiang & Hu, Shubo & Fan, Xuanxuan & Sun, Hui & Zhou, Wei & Guo, Furan & Song, Wenzhuo, 2021. "Sequential coalition formation for wind-thermal combined bidding," Energy, Elsevier, vol. 236(C).
    3. Lingmin, Chen & Jiekang, Wu & Fan, Wu & Huiling, Tang & Changjie, Li & Yan, Xiong, 2020. "Energy flow optimization method for multi-energy system oriented to combined cooling, heating and power," Energy, Elsevier, vol. 211(C).
    4. Jun Dong & Yaoyu Zhang & Yuanyuan Wang & Yao Liu, 2021. "A Two-Stage Optimal Dispatching Model for Micro Energy Grid Considering the Dual Goals of Economy and Environmental Protection under CVaR," Sustainability, MDPI, vol. 13(18), pages 1-28, September.
    5. Li, Zhengmao & Xu, Yan, 2019. "Temporally-coordinated optimal operation of a multi-energy microgrid under diverse uncertainties," Applied Energy, Elsevier, vol. 240(C), pages 719-729.
    6. Wang, Dongxiao & Qiu, Jing & Reedman, Luke & Meng, Ke & Lai, Loi Lei, 2018. "Two-stage energy management for networked microgrids with high renewable penetration," Applied Energy, Elsevier, vol. 226(C), pages 39-48.
    7. Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).
    8. Jani, Ali & Karimi, Hamid & Jadid, Shahram, 2022. "Two-layer stochastic day-ahead and real-time energy management of networked microgrids considering integration of renewable energy resources," Applied Energy, Elsevier, vol. 323(C).
    9. Wang, Fei & Ge, Xinxin & Yang, Peng & Li, Kangping & Mi, Zengqiang & Siano, Pierluigi & Duić, Neven, 2020. "Day-ahead optimal bidding and scheduling strategies for DER aggregator considering responsive uncertainty under real-time pricing," Energy, Elsevier, vol. 213(C).
    10. Guo, Hongye & Chen, Qixin & Shahidehpour, Mohammad & Xia, Qing & Kang, Chongqing, 2022. "Bidding behaviors of GENCOs under bounded rationality with renewable energy," Energy, Elsevier, vol. 250(C).
    11. Afzal S. Siddiqui & Sauleh A. Siddiqui, 2022. "Ambiguities and nonmonotonicities under prosumer power," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 492-532, October.
    12. Hu, Mian & Wang, Yan-Wu & Xiao, Jiang-Wen & Lin, Xiangning, 2019. "Multi-energy management with hierarchical distributed multi-scale strategy for pelagic islanded microgrid clusters," Energy, Elsevier, vol. 185(C), pages 910-921.
    13. Iria, José & Scott, Paul & Attarha, Ahmad & Gordon, Dan & Franklin, Evan, 2022. "MV-LV network-secure bidding optimisation of an aggregator of prosumers in real-time energy and reserve markets," Energy, Elsevier, vol. 242(C).
    14. Nikpour, Ahmad & Nateghi, Abolfazl & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Day-ahead optimal bidding of microgrids considering uncertainties of price and renewable energy resources," Energy, Elsevier, vol. 227(C).
    15. Lian, Yicheng & Li, Yuanzheng & Zhao, Yong & Yu, Chaofan & Zhao, Tianyang & Wu, Lei, 2023. "Robust multi-objective optimization for islanded data center microgrid operations," Applied Energy, Elsevier, vol. 330(PB).
    16. Javier Parra-Domínguez & Esteban Sánchez & Ángel Ordóñez, 2023. "The Prosumer: A Systematic Review of the New Paradigm in Energy and Sustainable Development," Sustainability, MDPI, vol. 15(13), pages 1-44, July.
    17. Wang, Yuwei & Tang, Liu & Yang, Yuanjuan & Sun, Wei & Zhao, Huiru, 2020. "A stochastic-robust coordinated optimization model for CCHP micro-grid considering multi-energy operation and power trading with electricity markets under uncertainties," Energy, Elsevier, vol. 198(C).
    18. Zhou, Xiaoqian & Ai, Qian & Yousif, Muhammad, 2019. "Two kinds of decentralized robust economic dispatch framework combined distribution network and multi-microgrids," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Wang, Yubin & Zheng, Yanchong & Yang, Qiang, 2023. "Day-ahead bidding strategy of regional integrated energy systems considering multiple uncertainties in electricity markets," Applied Energy, Elsevier, vol. 348(C).
    20. Sun, Lingling & Qiu, Jing & Han, Xiao & Dong, Zhao Yang, 2021. "Energy sharing platform based on call auction method with the maximum transaction volume," Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6577-:d:571701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.