IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v233y2021ics036054422101327x.html
   My bibliography  Save this article

Evaluation of pyrite cinders from sulfuric acid production as oxygen carrier for chemical looping combustion

Author

Listed:
  • Ma, Zhong
  • Liu, Guofu
  • Zhang, Hui
  • Zhang, Shuai
  • Lu, Yonggang

Abstract

According to the principle of chemical looping technology, the development of oxygen carriers with high redox performance and low-cost is a prerequisite for the commercial application of chemical looping. In this study, two pyrite cinder samples (Pc-1 with rich Fe2O3 and Pc-2 with rich inert constituents and CaSO4) were investigated as oxygen carriers. The reactivity and cycling stability of the selected samples were studied in a fixed-bed reactor under different reaction temperatures (800 °C, 850 °C and 900 °C). Under 900 °C, the oxygen carrying capacity of Pc-2 sample maintained at around 2.73% after several redox cycles. At the same conditions, the oxygen carrying capacity of Pc-1 sample was about 2.45% in the subsequent multiple cycles. It was observed that Pc-1 sample suffered serious deactivation and surface sintering in the multiple cycle experiment. The Pc-2 sample presented excellent redox performance and anti-sintering ability. When the redox activity of Pc-2 sample reached stable status, the change of reaction temperature showed slight influence on the oxygen carrying capacity of this sample, which indicated that the lattice oxygen in Pc-2 sample revealed high reaction activity. This study provided guidance for screening desired pyrite cinder in the practical applications of chemical looping.

Suggested Citation

  • Ma, Zhong & Liu, Guofu & Zhang, Hui & Zhang, Shuai & Lu, Yonggang, 2021. "Evaluation of pyrite cinders from sulfuric acid production as oxygen carrier for chemical looping combustion," Energy, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:energy:v:233:y:2021:i:c:s036054422101327x
    DOI: 10.1016/j.energy.2021.121079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422101327X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gu, Zhenhua & Zhang, Ling & Lu, Chunqiang & Qing, Shan & Li, Kongzhai, 2020. "Enhanced performance of copper ore oxygen carrier by red mud modification for chemical looping combustion," Applied Energy, Elsevier, vol. 277(C).
    2. Shuai Zhang & Rui Xiao, 2018. "Comparison of pyrite cinder with synthetic and natural iron†based oxygen carriers in coal†fueled chemical†looping combustion," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(1), pages 106-119, February.
    3. Luo, Ming & Yi, Yang & Wang, Shuzhong & Wang, Zhuliang & Du, Min & Pan, Jianfeng & Wang, Qian, 2018. "Review of hydrogen production using chemical-looping technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3186-3214.
    4. Durmaz, Merve & Dilmaç, Nesibe & Dilmaç, Ömer Faruk, 2020. "Evaluation of performance of copper converter slag as oxygen carrier in chemical-looping combustion (CLC)," Energy, Elsevier, vol. 196(C).
    5. Lin, Shen & Gu, Zhenhua & Zhu, Xing & Wei, Yonggang & Long, Yanhui & Yang, Kun & He, Fang & Wang, Hua & Li, Kongzhai, 2020. "Synergy of red mud oxygen carrier with MgO and NiO for enhanced chemical-looping combustion," Energy, Elsevier, vol. 197(C).
    6. Kuang, Cao & Wang, Shuzhong & Luo, Ming & Cai, Jianjun & Zhao, Jun, 2020. "Investigation of CuO-based oxygen carriers modified by three different ores in chemical looping combustion with solid fuels," Renewable Energy, Elsevier, vol. 154(C), pages 937-948.
    7. Pachler, Robert F. & Penthor, Stefan & Mayer, Karl & Hofbauer, Hermann, 2020. "Investigation of the fate of nitrogen in chemical looping combustion of gaseous fuels using two different oxygen carriers," Energy, Elsevier, vol. 195(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Shuaiyin & Huang, Yuming & Liu, Yang & Kong, Xianguang & Yin, Lei & Chen, Gaige, 2023. "Edge-cloud cooperation-driven smart and sustainable production for energy-intensive manufacturing industries," Applied Energy, Elsevier, vol. 337(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hsiao Mun Lee & Jiahui Xiong & Xinfei Chen & Haitao Wang & Da Song & Jinlong Xie & Yan Lin & Ya Xiong & Zhen Huang & Hongyu Huang, 2023. "Evaluation of the Reactivity of Hematite Oxygen Carriers Modified Using Alkaline (Earth) Metals and Transition Metals for the Chemical Looping Conversion of Lignite," Energies, MDPI, vol. 16(6), pages 1-16, March.
    2. Pan, Qinghuan & Ma, Liping & Du, Wang & Yang, Jie & Ao, Ran & Yin, Xia & Qing, Sancheng, 2022. "Hydrogen-enriched syngas production by lignite chemical looping gasification with composite oxygen carriers of phosphogypsum and steel slag," Energy, Elsevier, vol. 241(C).
    3. Liu, Feng & Liu, Jing & Li, Yu & Fang, Ruixue & Yang, Yingju, 2022. "Studies on the synergistically improved reactivity of spinel NiFe2O4 oxygen carrier for chemical-looping combustion," Energy, Elsevier, vol. 239(PB).
    4. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Wang, Xun & Fu, Genshen & Xiao, Bo & Xu, Tingting, 2022. "Optimization of nickel-iron bimetallic oxides for coproduction of hydrogen and syngas in chemical looping reforming with water splitting process," Energy, Elsevier, vol. 246(C).
    6. Calin-Cristian Cormos, 2018. "Techno-Economic Evaluations of Copper-Based Chemical Looping Air Separation System for Oxy-Combustion and Gasification Power Plants with Carbon Capture," Energies, MDPI, vol. 11(11), pages 1-17, November.
    7. Fang, Shiwen & Deng, Zhengbing & Lin, Yan & Huang, Zhen & Ding, Lixing & Deng, Lisheng & Huang, Hongyu, 2021. "Nitrogen migration in sewage sludge chemical looping gasification using copper slag modified by NiO as an oxygen carrier," Energy, Elsevier, vol. 228(C).
    8. Yin, Fan & Sun, Liyan & Zeng, Dewang & Gao, Zixiang & Xiao, Rui, 2024. "Investigations on oxygen carriers derived from natural ores or industrial solid wastes for chemical looping hydrogen generation using biomass pyrolysis gas," Energy, Elsevier, vol. 293(C).
    9. Fang, Shiwen & Deng, Zhengbing & Lin, Yan & Huang, Zhen & Ding, Lixing & Deng, Lisheng & Huang, Hongyu, 2021. "Investigation of the nitrogen migration characteristics in sewage sludge during chemical looping gasification," Energy, Elsevier, vol. 216(C).
    10. Chein, Rei-Yu & Hsu, Wen-Huai, 2019. "Thermodynamic analysis of syngas production via chemical looping dry reforming of methane," Energy, Elsevier, vol. 180(C), pages 535-547.
    11. Lu, Chunqiang & Li, Kongzhai & Zhu, Xing & Wei, Yonggang & Li, Lei & Zheng, Min & Fan, Bingbing & He, Fang & Wang, Hua, 2020. "Improved activity of magnetite oxygen carrier for chemical looping steam reforming by ultrasonic treatment," Applied Energy, Elsevier, vol. 261(C).
    12. Huang, Jijiang & Liu, Wen & Hu, Wenting & Metcalfe, Ian & Yang, Yanhui & Liu, Bin, 2019. "Phase interactions in Ni-Cu-Al2O3 mixed oxide oxygen carriers for chemical looping applications," Applied Energy, Elsevier, vol. 236(C), pages 635-647.
    13. Jiang, Dianqiang & Zhang, Dalin & Li, Xinyu & Wang, Shibao & Wang, Chenglong & Qin, Hao & Guo, Yanwen & Tian, Wenxi & Su, G.H. & Qiu, Suizheng, 2022. "Fluoride-salt-cooled high-temperature reactors: Review of historical milestones, research status, challenges, and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    14. Di, Zichen & Yilmaz, Duygu & Biswas, Arijit & Cheng, Fangqin & Leion, Henrik, 2022. "Spinel ferrite-contained industrial materials as oxygen carriers in chemical looping combustion," Applied Energy, Elsevier, vol. 307(C).
    15. Chen, Zong & Zhang, Rongjun & Xia, Guofu & Wu, Yu & Li, Hongwei & Sun, Zhao & Sun, Zhiqiang, 2021. "Vacuum promoted methane decomposition for hydrogen production with carbon separation: Parameter optimization and economic assessment," Energy, Elsevier, vol. 222(C).
    16. Mohsen Fallah Vostakola & Babak Salamatinia & Bahman Amini Horri, 2022. "A Review on Recent Progress in the Integrated Green Hydrogen Production Processes," Energies, MDPI, vol. 15(3), pages 1-41, February.
    17. Lin, Yousheng & Hu, Zhifeng & Ge, Ya & Xiao, Hanmin & Zhang, Gang & He, Qing, 2023. "Chemical looping with oxygen uncoupling of biomass-derived hydrochar with Cu-based oxygen carriers modified by alkaline earth metals," Energy, Elsevier, vol. 280(C).
    18. Nurdiawati, Anissa & Zaini, Ilman Nuran & Irhamna, Adrian Rizqi & Sasongko, Dwiwahju & Aziz, Muhammad, 2019. "Novel configuration of supercritical water gasification and chemical looping for highly-efficient hydrogen production from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 369-381.
    19. Zhang, Haotian & Sun, Zhuxing & Hu, Yun Hang, 2021. "Steam reforming of methane: Current states of catalyst design and process upgrading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    20. Fredrik Hildor & Tobias Mattisson & Carl Linderholm & Henrik Leion, 2023. "Metal impregnation on steel converter slag as an oxygen carrier," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 13(4), pages 509-519, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:233:y:2021:i:c:s036054422101327x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.