IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v233y2021ics0360544221012639.html
   My bibliography  Save this article

Economic dispatch of power systems with LMP-dependent demands: A non-iterative MILP model

Author

Listed:
  • Shen, Ziqi
  • Wei, Wei
  • Wu, Lei
  • Shafie-khah, Miadreza
  • Catalão, João P.S.

Abstract

The proliferation of demand response programs in the smart grid provides the system operator unique opportunities to reduce the load peak and alleviate network congestions. This paper considers the economic dispatch problem with elastic demands which flexibly respond to the locational marginal prices (LMPs). However, LMP is the dual variable of optimal power flow (OPF) problem and thus is unknown before the OPF problem is solved. Without LMP, the elastic demand is unclear, and the OPF problem cannot be set up. Given this interactive nature, it is difficult to acquire the dispatch strategy as well as the LMP according to the traditional OPF method. This paper thoroughly addresses this problem. Specifically, the limitation of the traditional LMP scheme in the described situation is analyzed. An equilibrium solution may not exist because the demand function and the discontinuous LMP may not have an intersection. To overcome this difficulty, LMP at the discontinuity point is redefined, so that the dispatch problem always has an equilibrium solution. A mixed-integer linear programming model for the economic dispatch problem with LMP-dependent load is proposed, and the equilibrium solution simultaneously offers the dispatch strategy and LMPs. Case studies demonstrate the difficulties of traditional approaches and the effectiveness of the proposed method.

Suggested Citation

  • Shen, Ziqi & Wei, Wei & Wu, Lei & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Economic dispatch of power systems with LMP-dependent demands: A non-iterative MILP model," Energy, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221012639
    DOI: 10.1016/j.energy.2021.121015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221012639
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Peng & Wang, Zixuan & Wang, Jiahao & Yang, Weihong & Guo, Tianyu & Yin, Yunxing, 2021. "Two-stage optimal operation of integrated energy system considering multiple uncertainties and integrated demand response," Energy, Elsevier, vol. 225(C).
    2. Nikzad, Mehdi & Mozafari, Babak & Bashirvand, Mahdi & Solaymani, Soodabeh & Ranjbar, Ali Mohamad, 2012. "Designing time-of-use program based on stochastic security constrained unit commitment considering reliability index," Energy, Elsevier, vol. 41(1), pages 541-548.
    3. Shahryari, E. & Shayeghi, H. & Mohammadi-ivatloo, B. & Moradzadeh, M., 2018. "An improved incentive-based demand response program in day-ahead and intra-day electricity markets," Energy, Elsevier, vol. 155(C), pages 205-214.
    4. Tabar, Vahid Sohrabi & Ghassemzadeh, Saeid & Tohidi, Sajjad, 2019. "Energy management in hybrid microgrid with considering multiple power market and real time demand response," Energy, Elsevier, vol. 174(C), pages 10-23.
    5. Tian, Man-Wen & Talebizadehsardari, Pouyan, 2021. "Energy cost and efficiency analysis of building resilience against power outage by shared parking station for electric vehicles and demand response program," Energy, Elsevier, vol. 215(PB).
    6. Hlalele, Thabo G. & Zhang, Jiangfeng & Naidoo, Raj M. & Bansal, Ramesh C., 2021. "Multi-objective economic dispatch with residential demand response programme under renewable obligation," Energy, Elsevier, vol. 218(C).
    7. Alipour, Manijeh & Zare, Kazem & Seyedi, Heresh & Jalali, Mehdi, 2019. "Real-time price-based demand response model for combined heat and power systems," Energy, Elsevier, vol. 168(C), pages 1119-1127.
    8. Monfared, Houman Jamshidi & Ghasemi, Ahmad & Loni, Abdolah & Marzband, Mousa, 2019. "A hybrid price-based demand response program for the residential micro-grid," Energy, Elsevier, vol. 185(C), pages 274-285.
    9. Zugno, Marco & Morales, Juan Miguel & Pinson, Pierre & Madsen, Henrik, 2013. "A bilevel model for electricity retailers' participation in a demand response market environment," Energy Economics, Elsevier, vol. 36(C), pages 182-197.
    10. Nizami, M.S.H. & Hossain, M.J. & Amin, B.M. Ruhul & Fernandez, Edstan, 2020. "A residential energy management system with bi-level optimization-based bidding strategy for day-ahead bi-directional electricity trading," Applied Energy, Elsevier, vol. 261(C).
    11. Sheikhi, Aras & Bahrami, Shahab & Ranjbar, Ali Mohammad, 2015. "An autonomous demand response program for electricity and natural gas networks in smart energy hubs," Energy, Elsevier, vol. 89(C), pages 490-499.
    12. Bai, Linquan & Li, Fangxing & Cui, Hantao & Jiang, Tao & Sun, Hongbin & Zhu, Jinxiang, 2016. "Interval optimization based operating strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty," Applied Energy, Elsevier, vol. 167(C), pages 270-279.
    13. Cui, Hantao & Li, Fangxing & Hu, Qinran & Bai, Linquan & Fang, Xin, 2016. "Day-ahead coordinated operation of utility-scale electricity and natural gas networks considering demand response based virtual power plants," Applied Energy, Elsevier, vol. 176(C), pages 183-195.
    14. Chen, Zexing & Zhang, Yongjun & Tang, Wenhu & Lin, Xiaoming & Li, Qifeng, 2019. "Generic modelling and optimal day-ahead dispatch of micro-energy system considering the price-based integrated demand response," Energy, Elsevier, vol. 176(C), pages 171-183.
    15. Dadashi, Mojtaba & Haghifam, Sara & Zare, Kazem & Haghifam, Mahmoud-Reza & Abapour, Mehdi, 2020. "Short-term scheduling of electricity retailers in the presence of Demand Response Aggregators: A two-stage stochastic Bi-Level programming approach," Energy, Elsevier, vol. 205(C).
    16. Ferreira, R.S. & Barroso, L.A. & Carvalho, M.M., 2012. "Demand response models with correlated price data: A robust optimization approach," Applied Energy, Elsevier, vol. 96(C), pages 133-149.
    17. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    18. Shahryari, E. & Shayeghi, H. & Mohammadi-ivatloo, B. & Moradzadeh, M., 2019. "A copula-based method to consider uncertainties for multi-objective energy management of microgrid in presence of demand response," Energy, Elsevier, vol. 175(C), pages 879-890.
    19. Dranka, Géremi Gilson & Ferreira, Paula, 2019. "Review and assessment of the different categories of demand response potentials," Energy, Elsevier, vol. 179(C), pages 280-294.
    20. Ghasemi, Ahmad & Mortazavi, Seyed Saeidollah & Mashhour, Elaheh, 2015. "Integration of nodal hourly pricing in day-ahead SDC (smart distribution company) optimization framework to effectively activate demand response," Energy, Elsevier, vol. 86(C), pages 649-660.
    21. Wang, Fei & Xu, Hanchen & Xu, Ti & Li, Kangping & Shafie-khah, Miadreza & Catalão, João. P.S., 2017. "The values of market-based demand response on improving power system reliability under extreme circumstances," Applied Energy, Elsevier, vol. 193(C), pages 220-231.
    22. Wang, Jianxiao & Zhong, Haiwang & Ma, Ziming & Xia, Qing & Kang, Chongqing, 2017. "Review and prospect of integrated demand response in the multi-energy system," Applied Energy, Elsevier, vol. 202(C), pages 772-782.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Shengyang & Ding, Zhaohao & Wang, Jingyu & Shi, Dongyuan, 2023. "Unveiling bidding uncertainties in electricity markets: A Bayesian deep learning framework based on accurate variational inference," Energy, Elsevier, vol. 276(C).
    2. Ahmed, Ijaz & Rehan, Muhammad & Basit, Abdul & Malik, Saddam Hussain & Alvi, Um-E-Habiba & Hong, Keum-Shik, 2022. "Multi-area economic emission dispatch for large-scale multi-fueled power plants contemplating inter-connected grid tie-lines power flow limitations," Energy, Elsevier, vol. 261(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dezhou Kong & Jianru Jing & Tingyue Gu & Xuanyue Wei & Xingning Sa & Yimin Yang & Zhiang Zhang, 2023. "Theoretical Analysis of Integrated Community Energy Systems (ICES) Considering Integrated Demand Response (IDR): A Review of the System Modelling and Optimization," Energies, MDPI, vol. 16(10), pages 1-22, May.
    2. Xu, Bo & Wang, Jiexin & Guo, Mengyuan & Lu, Jiayu & Li, Gehui & Han, Liang, 2021. "A hybrid demand response mechanism based on real-time incentive and real-time pricing," Energy, Elsevier, vol. 231(C).
    3. Qi, Haijie & Yue, Hong & Zhang, Jiangfeng & Lo, Kwok L., 2021. "Optimisation of a smart energy hub with integration of combined heat and power, demand side response and energy storage," Energy, Elsevier, vol. 234(C).
    4. Roy, Nibir Baran & Das, Debapriya, 2024. "Stochastic power allocation of distributed tri-generation plants and energy storage units in a zero bus microgrid with electric vehicles and demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    5. Ghahramani, Mehrdad & Nazari-Heris, Morteza & Zare, Kazem & Mohammadi-Ivatloo, Behnam, 2022. "A two-point estimate approach for energy management of multi-carrier energy systems incorporating demand response programs," Energy, Elsevier, vol. 249(C).
    6. Wagner, Lukas Peter & Reinpold, Lasse Matthias & Kilthau, Maximilian & Fay, Alexander, 2023. "A systematic review of modeling approaches for flexible energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    7. Ding, Jianyong & Gao, Ciwei & Song, Meng & Yan, Xingyu & Chen, Tao, 2022. "Bi-level optimal scheduling of virtual energy station based on equal exergy replacement mechanism," Applied Energy, Elsevier, vol. 327(C).
    8. Morales-España, Germán & Martínez-Gordón, Rafael & Sijm, Jos, 2022. "Classifying and modelling demand response in power systems," Energy, Elsevier, vol. 242(C).
    9. Liu, Youquan & Li, Huazhen & Zhu, Jiawei & Lin, Yishuai & Lei, Weidong, 2023. "Multi-objective optimal scheduling of household appliances for demand side management using a hybrid heuristic algorithm," Energy, Elsevier, vol. 262(PA).
    10. Yuehao Zhao & Ke Peng & Bingyin Xu & Huimin Li & Yuquan Liu & Xinhui Zhang, 2018. "Bilevel Optimal Dispatch Strategy for a Multi-Energy System of Industrial Parks by Considering Integrated Demand Response," Energies, MDPI, vol. 11(8), pages 1-21, July.
    11. Georgios I. Tsoumalis & Zafeirios N. Bampos & Georgios V. Chatzis & Pandelis N. Biskas, 2022. "Overview of Natural Gas Boiler Optimization Technologies and Potential Applications on Gas Load Balancing Services," Energies, MDPI, vol. 15(22), pages 1-24, November.
    12. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    13. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    14. Wu, Long & Yin, Xunyuan & Pan, Lei & Liu, Jinfeng, 2023. "Distributed economic predictive control of integrated energy systems for enhanced synergy and grid response: A decomposition and cooperation strategy," Applied Energy, Elsevier, vol. 349(C).
    15. Astriani, Yuli & Shafiullah, GM & Shahnia, Farhad, 2021. "Incentive determination of a demand response program for microgrids," Applied Energy, Elsevier, vol. 292(C).
    16. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).
    17. Annala, Salla & Ruggiero, Salvatore & Kangas, Hanna-Liisa & Honkapuro, Samuli & Ohrling, Tiina, 2022. "Impact of home market on business development and internationalization of demand response firms," Energy, Elsevier, vol. 242(C).
    18. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    19. Lu, Qing & Lü, Shuaikang & Leng, Yajun, 2019. "A Nash-Stackelberg game approach in regional energy market considering users’ integrated demand response," Energy, Elsevier, vol. 175(C), pages 456-470.
    20. Wang, Fei & Ge, Xinxin & Yang, Peng & Li, Kangping & Mi, Zengqiang & Siano, Pierluigi & Duić, Neven, 2020. "Day-ahead optimal bidding and scheduling strategies for DER aggregator considering responsive uncertainty under real-time pricing," Energy, Elsevier, vol. 213(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:233:y:2021:i:c:s0360544221012639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.