IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v185y2019icp274-285.html
   My bibliography  Save this article

A hybrid price-based demand response program for the residential micro-grid

Author

Listed:
  • Monfared, Houman Jamshidi
  • Ghasemi, Ahmad
  • Loni, Abdolah
  • Marzband, Mousa

Abstract

During the past two decades, providing solutions to enhance the efficiency of power systems, like optimal consumption management has been attracting a good deal of attention. Demand Response (DR) programs, have always been among the appropriate ways to persuade consumers to alter consumption patterns. In the main, the implementation of DR programs is carried out by price-based and incentive-based strategies. In this paper, first, a brief overview of the smart grid principles on retail electricity pricing is presented. Then, a hybrid price-based demand response (HPDR) is proposed, which is more adaptable to pricing principles compared to other existing strategies. This strategy is implemented in day-ahead scheduling of a residential microgrid. Moreover, to increase the accuracy of the proposed model, the uncertainty regarding decision variables and parameters including the generation units, load dispatch in the Micro-grid is considered. Finally, the results of numerical studies show the effectiveness of the proposed retail pricing strategy, and demonstrate a decrease in Peak-to-Valley (PtV) index and Coefficient of Variation Percentage (CVP) by almost 12% and 25% as well as an increase in social welfare indicator, power sale at peak times, respectively, by approximately 18%, 24%, and 25% in comparison with other methods.

Suggested Citation

  • Monfared, Houman Jamshidi & Ghasemi, Ahmad & Loni, Abdolah & Marzband, Mousa, 2019. "A hybrid price-based demand response program for the residential micro-grid," Energy, Elsevier, vol. 185(C), pages 274-285.
  • Handle: RePEc:eee:energy:v:185:y:2019:i:c:p:274-285
    DOI: 10.1016/j.energy.2019.07.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219313726
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.07.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Doostizadeh, Meysam & Ghasemi, Hassan, 2012. "A day-ahead electricity pricing model based on smart metering and demand-side management," Energy, Elsevier, vol. 46(1), pages 221-230.
    2. Ghadikolaei, Hadi Moghimi & Tajik, Elham & Aghaei, Jamshid & Charwand, Mansour, 2012. "Integrated day-ahead and hour-ahead operation model of discos in retail electricity markets considering DGs and CO2 emission penalty cost," Applied Energy, Elsevier, vol. 95(C), pages 174-185.
    3. Aryani, Morteza & Ahmadian, Mohammad & Sheikh-El-Eslami, Mohammad-Kazem, 2018. "A two-stage robust investment model for a risk-averse price-maker power producer," Energy, Elsevier, vol. 143(C), pages 980-994.
    4. Faruqui, Ahmad & Malko, J.Robert, 1983. "The residential demand for electricity by time-of-use: A survey of twelve experiments with peak load pricing," Energy, Elsevier, vol. 8(10), pages 781-795.
    5. Lijesen, Mark G., 2007. "The real-time price elasticity of electricity," Energy Economics, Elsevier, vol. 29(2), pages 249-258, March.
    6. Ghasemi, Ahmad & Mortazavi, Seyed Saeidollah & Mashhour, Elaheh, 2015. "Integration of nodal hourly pricing in day-ahead SDC (smart distribution company) optimization framework to effectively activate demand response," Energy, Elsevier, vol. 86(C), pages 649-660.
    7. Vishnupriyan, J. & Manoharan, P.S., 2017. "Demand side management approach to rural electrification of different climate zones in Indian state of Tamil Nadu," Energy, Elsevier, vol. 138(C), pages 799-815.
    8. Dupont, B. & De Jonghe, C. & Olmos, L. & Belmans, R., 2014. "Demand response with locational dynamic pricing to support the integration of renewables," Energy Policy, Elsevier, vol. 67(C), pages 344-354.
    9. Winters, Tobey, 2001. "Retail Electricity Markets Require Marginal Cost Real-Time Pricing," The Electricity Journal, Elsevier, vol. 14(9), pages 74-81, November.
    10. Herter, Karen, 2007. "Residential implementation of critical-peak pricing of electricity," Energy Policy, Elsevier, vol. 35(4), pages 2121-2130, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Bo & Wang, Jiexin & Guo, Mengyuan & Lu, Jiayu & Li, Gehui & Han, Liang, 2021. "A hybrid demand response mechanism based on real-time incentive and real-time pricing," Energy, Elsevier, vol. 231(C).
    2. Li, Yuanyuan & Li, Junxiang & He, Jianjia & Zhang, Shuyuan, 2021. "The real-time pricing optimization model of smart grid based on the utility function of the logistic function," Energy, Elsevier, vol. 224(C).
    3. Zhang, Wenyi & Wei, Wei & Chen, Laijun & Zheng, Boshen & Mei, Shengwei, 2020. "Service pricing and load dispatch of residential shared energy storage unit," Energy, Elsevier, vol. 202(C).
    4. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).
    5. Gupta, S. & Maulik, A. & Das, D. & Singh, A., 2022. "Coordinated stochastic optimal energy management of grid-connected microgrids considering demand response, plug-in hybrid electric vehicles, and smart transformers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    6. Adlband, Nahid & Biguesh, Mehrzad & Mohammadi, Mohammad, 2020. "A privacy-preserving and aggregate load controlling decentralized energy consumption scheduling scheme," Energy, Elsevier, vol. 198(C).
    7. Zang, Haixiang & Xu, Ruiqi & Cheng, Lilin & Ding, Tao & Liu, Ling & Wei, Zhinong & Sun, Guoqiang, 2021. "Residential load forecasting based on LSTM fusing self-attention mechanism with pooling," Energy, Elsevier, vol. 229(C).
    8. Hyung-Joon Kim & Mun-Kyeom Kim, 2019. "Multi-Objective Based Optimal Energy Management of Grid-Connected Microgrid Considering Advanced Demand Response," Energies, MDPI, vol. 12(21), pages 1-28, October.
    9. Kim, Jangkyum & Oh, Hyeontaek & Choi, Jun Kyun, 2022. "Learning based cost optimal energy management model for campus microgrid systems," Applied Energy, Elsevier, vol. 311(C).
    10. Volpato, Gabriele & Carraro, Gianluca & Cont, Marco & Danieli, Piero & Rech, Sergio & Lazzaretto, Andrea, 2022. "General guidelines for the optimal economic aggregation of prosumers in energy communities," Energy, Elsevier, vol. 258(C).
    11. Emad M. Ahmed & Mokhtar Aly & Ahmed Elmelegi & Abdullah G. Alharbi & Ziad M. Ali, 2019. "Multifunctional Distributed MPPT Controller for 3P4W Grid-Connected PV Systems in Distribution Network with Unbalanced Loads," Energies, MDPI, vol. 12(24), pages 1-19, December.
    12. Gong, Lili & Cao, Wu & Liu, Kangli & Yu, Yue & Zhao, Jianfeng, 2020. "Demand responsive charging strategy of electric vehicles to mitigate the volatility of renewable energy sources," Renewable Energy, Elsevier, vol. 156(C), pages 665-676.
    13. Muhannad Alaraj & Ibrahim Alsaidan & Astitva Kumar & Mohammad Rizwan & Majid Jamil, 2023. "Advanced Intelligent Approach for Solar PV Power Forecasting Using Meteorological Parameters for Qassim Region, Saudi Arabia," Sustainability, MDPI, vol. 15(12), pages 1-16, June.
    14. Shen, Ziqi & Wei, Wei & Wu, Lei & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Economic dispatch of power systems with LMP-dependent demands: A non-iterative MILP model," Energy, Elsevier, vol. 233(C).
    15. Wang, Ziyang & Sun, Mei & Gao, Cuixia & Wang, Xin & Ampimah, Benjamin Chris, 2021. "A new interactive real-time pricing mechanism of demand response based on an evaluation model," Applied Energy, Elsevier, vol. 295(C).
    16. Laing, Harry & O'Malley, Chris & Browne, Anthony & Rutherford, Tony & Baines, Tony & Moore, Andrew & Black, Ken & Willis, Mark J., 2022. "Optimisation of energy usage and carbon emissions monitoring using MILP for an advanced anaerobic digester plant," Energy, Elsevier, vol. 256(C).
    17. Nirbheram, Joshi Sukhdev & Mahesh, Aeidapu & Bhimaraju, Ambati, 2023. "Techno-economic analysis of grid-connected hybrid renewable energy system adapting hybrid demand response program and novel energy management strategy," Renewable Energy, Elsevier, vol. 212(C), pages 1-16.
    18. Wen, Lulu & Zhou, Kaile & Li, Jun & Wang, Shanyong, 2020. "Modified deep learning and reinforcement learning for an incentive-based demand response model," Energy, Elsevier, vol. 205(C).
    19. Li, Longxi, 2021. "Coordination between smart distribution networks and multi-microgrids considering demand side management: A trilevel framework," Omega, Elsevier, vol. 102(C).
    20. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    21. Incheol Shin, 2020. "Approximation Algorithm-Based Prosumer Scheduling for Microgrids," Energies, MDPI, vol. 13(21), pages 1-16, November.
    22. Guo, Li & Hou, Ruosong & Liu, Yixin & Wang, Chengshan & Lu, Hai, 2020. "A novel typical day selection method for the robust planning of stand-alone wind-photovoltaic-diesel-battery microgrid," Applied Energy, Elsevier, vol. 263(C).
    23. Khaloie, Hooman & Abdollahi, Amir & Shafie-khah, Miadreza & Anvari-Moghaddam, Amjad & Nojavan, Sayyad & Siano, Pierluigi & Catalão, João P.S., 2020. "Coordinated wind-thermal-energy storage offering strategy in energy and spinning reserve markets using a multi-stage model," Applied Energy, Elsevier, vol. 259(C).
    24. Liu, Youquan & Li, Huazhen & Zhu, Jiawei & Lin, Yishuai & Lei, Weidong, 2023. "Multi-objective optimal scheduling of household appliances for demand side management using a hybrid heuristic algorithm," Energy, Elsevier, vol. 262(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghasemi, Ahmad & Jamshidi Monfared, Houman & Loni, Abdolah & Marzband, Mousa, 2021. "CVaR-based retail electricity pricing in day-ahead scheduling of microgrids," Energy, Elsevier, vol. 227(C).
    2. Ghasemi, Ahmad & Mortazavi, Seyed Saeidollah & Mashhour, Elaheh, 2015. "Integration of nodal hourly pricing in day-ahead SDC (smart distribution company) optimization framework to effectively activate demand response," Energy, Elsevier, vol. 86(C), pages 649-660.
    3. Davatgaran, Vahid & Saniei, Mohsen & Mortazavi, Seyed Saeidollah, 2019. "Smart distribution system management considering electrical and thermal demand response of energy hubs," Energy, Elsevier, vol. 169(C), pages 38-49.
    4. Ahmadi, Abdollah & Charwand, Mansour & Siano, Pierluigi & Nezhad, Ali Esmaeel & Sarno, Debora & Gitizadeh, Mohsen & Raeisi, Fatima, 2016. "A novel two-stage stochastic programming model for uncertainty characterization in short-term optimal strategy for a distribution company," Energy, Elsevier, vol. 117(P1), pages 1-9.
    5. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    6. Jieyi Kang & David Reiner, 2021. "Machine Learning on residential electricity consumption: Which households are more responsive to weather?," Working Papers EPRG2113, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    7. Wang, Yong & Li, Lin, 2015. "Time-of-use electricity pricing for industrial customers: A survey of U.S. utilities," Applied Energy, Elsevier, vol. 149(C), pages 89-103.
    8. Calver, Philippa & Simcock, Neil, 2021. "Demand response and energy justice: A critical overview of ethical risks and opportunities within digital, decentralised, and decarbonised futures," Energy Policy, Elsevier, vol. 151(C).
    9. Woo, C.K. & Li, R. & Shiu, A. & Horowitz, I., 2013. "Residential winter kWh responsiveness under optional time-varying pricing in British Columbia," Applied Energy, Elsevier, vol. 108(C), pages 288-297.
    10. Massimo, Filippini, 2011. "Short- and long-run time-of-use price elasticities in Swiss residential electricity demand," Energy Policy, Elsevier, vol. 39(10), pages 5811-5817, October.
    11. Katz, Jonas & Andersen, Frits Møller & Morthorst, Poul Erik, 2016. "Load-shift incentives for household demand response: Evaluation of hourly dynamic pricing and rebate schemes in a wind-based electricity system," Energy, Elsevier, vol. 115(P3), pages 1602-1616.
    12. Makena Coffman & Paul Bernstein & Derek Stenclik & Sherilyn Wee & Aida Arik, 2018. "Integrating Renewable Energy with Time Varying Pricing," Working Papers 2018-6, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    13. Deng, Tingting & Yan, Wenzhou & Nojavan, Sayyad & Jermsittiparsert, Kittisak, 2020. "Risk evaluation and retail electricity pricing using downside risk constraints method," Energy, Elsevier, vol. 192(C).
    14. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
    15. Chmielewski, Adrian & Gumiński, Robert & Mączak, Jędrzej & Radkowski, Stanisław & Szulim, Przemysław, 2016. "Aspects of balanced development of RES and distributed micro-cogeneration use in Poland: Case study of a µCHP with Stirling engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 930-952.
    16. Yang, Changhui & Meng, Chen & Zhou, Kaile, 2018. "Residential electricity pricing in China: The context of price-based demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2870-2878.
    17. Ghasemi, Ahmad & Mortazavi, Seyed Saeidollah & Mashhour, Elaheh, 2016. "Hourly demand response and battery energy storage for imbalance reduction of smart distribution company embedded with electric vehicles and wind farms," Renewable Energy, Elsevier, vol. 85(C), pages 124-136.
    18. Alasseri, Rajeev & Tripathi, Ashish & Joji Rao, T. & Sreekanth, K.J., 2017. "A review on implementation strategies for demand side management (DSM) in Kuwait through incentive-based demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 617-635.
    19. Ahmad Faruqui & Sanem Sergici, 2010. "Household response to dynamic pricing of electricity: a survey of 15 experiments," Journal of Regulatory Economics, Springer, vol. 38(2), pages 193-225, October.
    20. Zhou, Kaile & Yang, Shanlin, 2015. "Demand side management in China: The context of China’s power industry reform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 954-965.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:185:y:2019:i:c:p:274-285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.