IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v96y2012icp133-149.html
   My bibliography  Save this article

Demand response models with correlated price data: A robust optimization approach

Author

Listed:
  • Ferreira, R.S.
  • Barroso, L.A.
  • Carvalho, M.M.

Abstract

In the electricity industry, the processes through which consumers respond to price signals embedded in tariffs by changing their consumption patterns is generally referred to as demand response. In such a context, consumers are offered an opportunity to maximize the surplus derived from electricity usage by actively scheduling consumption over time periods with potentially different energy prices. The objective of this work is to analyze the role of correlation in prices of successive periods over which consumption is to be scheduled, in a demand response context. We use robust optimization techniques to propose an optimization model for consumption scheduling when prices of different periods are highly correlated, and also suggest approaches to correctly incorporate real-world correlated price data to this model. Positive results from quantitative case studies indicate that it is of great importance to employ a solution approach that correctly models correlation among prices when scheduling consumption.

Suggested Citation

  • Ferreira, R.S. & Barroso, L.A. & Carvalho, M.M., 2012. "Demand response models with correlated price data: A robust optimization approach," Applied Energy, Elsevier, vol. 96(C), pages 133-149.
  • Handle: RePEc:eee:appene:v:96:y:2012:i:c:p:133-149
    DOI: 10.1016/j.apenergy.2012.01.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912000220
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.01.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    2. Noakes, Donald J. & McLeod, A. Ian & Hipel, Keith W., 1985. "Forecasting monthly riverflow time series," International Journal of Forecasting, Elsevier, vol. 1(2), pages 179-190.
    3. Kim, Jin-Ho & Shcherbakova, Anastasia, 2011. "Common failures of demand response," Energy, Elsevier, vol. 36(2), pages 873-880.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Kun & Gao, Feng, 2017. "Scenario adjustable scheduling model with robust constraints for energy intensive corporate microgrid with wind power," Renewable Energy, Elsevier, vol. 113(C), pages 1-10.
    2. Abdelfatah Ali & Mostafa F. Shaaban & Hatem F. Sindi, 2022. "Optimal Operational Planning of RES and HESS in Smart Grids Considering Demand Response and DSTATCOM Functionality of the Interfacing Inverters," Sustainability, MDPI, vol. 14(20), pages 1-21, October.
    3. Woo, C.K. & Sreedharan, P. & Hargreaves, J. & Kahrl, F. & Wang, J. & Horowitz, I., 2014. "A review of electricity product differentiation," Applied Energy, Elsevier, vol. 114(C), pages 262-272.
    4. Shen, Feifei & Zhao, Liang & Du, Wenli & Zhong, Weimin & Qian, Feng, 2020. "Large-scale industrial energy systems optimization under uncertainty: A data-driven robust optimization approach," Applied Energy, Elsevier, vol. 259(C).
    5. Rong Xia & Jun Dai & Xiangjie Cheng & Jiaqing Fan & Jing Ye & Qiangang Jia & Sijie Chen & Qiang Zhang, 2024. "Demand Response of Integrated Zero-Carbon Power Plant: Model and Method," Energies, MDPI, vol. 17(14), pages 1-15, July.
    6. Pallonetto, Fabiano & De Rosa, Mattia & D’Ettorre, Francesco & Finn, Donal P., 2020. "On the assessment and control optimisation of demand response programs in residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    7. Xu, Fang Yuan & Zhang, Tao & Lai, Loi Lei & Zhou, Hao, 2015. "Shifting Boundary for price-based residential demand response and applications," Applied Energy, Elsevier, vol. 146(C), pages 353-370.
    8. Kwon, Pil Seok & Østergaard, Poul, 2014. "Assessment and evaluation of flexible demand in a Danish future energy scenario," Applied Energy, Elsevier, vol. 134(C), pages 309-320.
    9. Mohsen Jalalimajidi & SM Seyedhosseini & Ahmad Makui & Masoud Babakhani, 2018. "Developing a comprehensive model for new energy replacement in the country’s development program using a robust optimization approach," Energy & Environment, , vol. 29(6), pages 868-890, September.
    10. Rahim, Sahar & Wang, Zhen & Ju, Ping, 2022. "Overview and applications of Robust optimization in the avant-garde energy grid infrastructure: A systematic review," Applied Energy, Elsevier, vol. 319(C).
    11. Salahi, Niloofar & Jafari, Mohsen A., 2016. "Energy-Performance as a driver for optimal production planning," Applied Energy, Elsevier, vol. 174(C), pages 88-100.
    12. Shen, Ziqi & Wei, Wei & Wu, Lei & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Economic dispatch of power systems with LMP-dependent demands: A non-iterative MILP model," Energy, Elsevier, vol. 233(C).
    13. Yu, Mengmeng & Lu, Renzhi & Hong, Seung Ho, 2016. "A real-time decision model for industrial load management in a smart grid," Applied Energy, Elsevier, vol. 183(C), pages 1488-1497.
    14. Nolan, Sheila & O’Malley, Mark, 2015. "Challenges and barriers to demand response deployment and evaluation," Applied Energy, Elsevier, vol. 152(C), pages 1-10.
    15. Vardakas, John S. & Zorba, Nizar & Verikoukis, Christos V., 2015. "Performance evaluation of power demand scheduling scenarios in a smart grid environment," Applied Energy, Elsevier, vol. 142(C), pages 164-178.
    16. Upton, J. & Murphy, M. & Shalloo, L. & Groot Koerkamp, P.W.G. & De Boer, I.J.M., 2015. "Assessing the impact of changes in the electricity price structure on dairy farm energy costs," Applied Energy, Elsevier, vol. 137(C), pages 1-8.
    17. Aghaei, Jamshid & Alizadeh, Mohammad-Iman, 2013. "Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems)," Energy, Elsevier, vol. 55(C), pages 1044-1054.
    18. Han, Biao & Shang, Chao & Huang, Dexian, 2021. "Multiple kernel learning-aided robust optimization: Learning algorithm, computational tractability, and usage in multi-stage decision-making," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1004-1018.
    19. Adham I. Tammam & Miguel F. Anjos & Michel Gendreau, 2020. "Balancing supply and demand in the presence of renewable generation via demand response for electric water heaters," Annals of Operations Research, Springer, vol. 292(2), pages 753-770, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianwen Ren & Yingqiang Xu & Shiyuan Wang, 2018. "A Distributed Robust Dispatch Approach for Interconnected Systems with a High Proportion of Wind Power Penetration," Energies, MDPI, vol. 11(4), pages 1-18, April.
    2. Elena Vechkinzova & Yelena Petrenko & Yana S. Matkovskaya & Gaukhar Koshebayeva, 2021. "The Dilemma of Long-Term Development of the Electric Power Industry in Kazakhstan," Energies, MDPI, vol. 14(9), pages 1-21, April.
    3. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    4. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    5. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    6. Li, Shukai & Liu, Ronghui & Yang, Lixing & Gao, Ziyou, 2019. "Robust dynamic bus controls considering delay disturbances and passenger demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 88-109.
    7. Jeong, Jaehee & Premsankar, Gopika & Ghaddar, Bissan & Tarkoma, Sasu, 2024. "A robust optimization approach for placement of applications in edge computing considering latency uncertainty," Omega, Elsevier, vol. 126(C).
    8. Chassein, André & Dokka, Trivikram & Goerigk, Marc, 2019. "Algorithms and uncertainty sets for data-driven robust shortest path problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 671-686.
    9. Kandpal, Bakul & Pareek, Parikshit & Verma, Ashu, 2022. "A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid," Energy, Elsevier, vol. 249(C).
    10. Guo, Shiliang & Li, Pengpeng & Ma, Kai & Yang, Bo & Yang, Jie, 2022. "Robust energy management for industrial microgrid considering charging and discharging pressure of electric vehicles," Applied Energy, Elsevier, vol. 325(C).
    11. Shen, Feifei & Zhao, Liang & Wang, Meihong & Du, Wenli & Qian, Feng, 2022. "Data-driven adaptive robust optimization for energy systems in ethylene plant under demand uncertainty," Applied Energy, Elsevier, vol. 307(C).
    12. Baringo, Luis & Boffino, Luigi & Oggioni, Giorgia, 2020. "Robust expansion planning of a distribution system with electric vehicles, storage and renewable units," Applied Energy, Elsevier, vol. 265(C).
    13. Hasani, Aliakbar & Khosrojerdi, Amirhossein, 2016. "Robust global supply chain network design under disruption and uncertainty considering resilience strategies: A parallel memetic algorithm for a real-life case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 20-52.
    14. Popović, Željko N. & KovaÄ ki, Neven V. & Popović, Dragan S., 2020. "Resilient distribution network planning under the severe windstorms using a risk-based approach," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    15. Dimitris Bertsimas & Agni Orfanoudaki, 2021. "Algorithmic Insurance," Papers 2106.00839, arXiv.org, revised Dec 2022.
    16. Rafael Epstein & Andres Neely & Andres Weintraub & Fernando Valenzuela & Sergio Hurtado & Guillermo Gonzalez & Alex Beiza & Mauricio Naveas & Florencio Infante & Fernando Alarcon & Gustavo Angulo & Cr, 2012. "A Strategic Empty Container Logistics Optimization in a Major Shipping Company," Interfaces, INFORMS, vol. 42(1), pages 5-16, February.
    17. Lu, Chung-Cheng & Ying, Kuo-Ching & Chen, Hui-Ju, 2016. "Real-time relief distribution in the aftermath of disasters – A rolling horizon approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 1-20.
    18. Mohammad Ebrahim Banihabib & Reihaneh Bandari & Richard C. Peralta, 2019. "Auto-Regressive Neural-Network Models for Long Lead-Time Forecasting of Daily Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 159-172, January.
    19. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    20. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:96:y:2012:i:c:p:133-149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.