IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v262y2023ipas0360544222023428.html
   My bibliography  Save this article

Multi-objective optimal scheduling of household appliances for demand side management using a hybrid heuristic algorithm

Author

Listed:
  • Liu, Youquan
  • Li, Huazhen
  • Zhu, Jiawei
  • Lin, Yishuai
  • Lei, Weidong

Abstract

In the era of smart grids and the Internet of Things, demand side management, which aims to reduce electricity bills while increasing user satisfaction by scheduling appliances properly, becomes imperative for residential consumers. As a result of the conflict between the two objectives, it is impossible to optimize them simultaneously. Nevertheless, using multi-objective optimization approaches, trade-off solutions can be obtained. In this paper, a novel demand-side management method is presented to manage the operation of residential appliances. In the beginning, appliances are divided into interruptible, non-interruptible, and power-shiftable types according to their operating characteristics and the user’s preferences. And the mathematical models are built accordingly. Then, a multi-objective optimization problem is formulated to minimize the electricity cost and user dissatisfaction, in which residents’ tolerance to discomfort is considered. Since it is a multi-objective mixed integer nonlinear programming problem, a hybrid meta-heuristic algorithm is proposed to solve it efficiently. The experiment results have confirmed the effectiveness of the optimization model and the higher efficiency of the hybrid algorithm. Furthermore, a case study has been performed to demonstrate the effectiveness of the scheduling method.

Suggested Citation

  • Liu, Youquan & Li, Huazhen & Zhu, Jiawei & Lin, Yishuai & Lei, Weidong, 2023. "Multi-objective optimal scheduling of household appliances for demand side management using a hybrid heuristic algorithm," Energy, Elsevier, vol. 262(PA).
  • Handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222023428
    DOI: 10.1016/j.energy.2022.125460
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222023428
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125460?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Monfared, Houman Jamshidi & Ghasemi, Ahmad & Loni, Abdolah & Marzband, Mousa, 2019. "A hybrid price-based demand response program for the residential micro-grid," Energy, Elsevier, vol. 185(C), pages 274-285.
    2. Javadi, Mohammad Sadegh & Gough, Matthew & Lotfi, Mohamed & Esmaeel Nezhad, Ali & Santos, Sérgio F. & Catalão, João P.S., 2020. "Optimal self-scheduling of home energy management system in the presence of photovoltaic power generation and batteries," Energy, Elsevier, vol. 210(C).
    3. Dengiz, Thomas & Jochem, Patrick & Fichtner, Wolf, 2021. "Demand response through decentralized optimization in residential areas with wind and photovoltaics," Energy, Elsevier, vol. 223(C).
    4. Wang, Jidong & Liu, Jianxin & Li, Chenghao & Zhou, Yue & Wu, Jianzhong, 2020. "Optimal scheduling of gas and electricity consumption in a smart home with a hybrid gas boiler and electric heating system," Energy, Elsevier, vol. 204(C).
    5. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.
    6. Tostado-Véliz, Marcos & Kamel, Salah & Aymen, Flah & Jurado, Francisco, 2022. "A novel hybrid lexicographic-IGDT methodology for robust multi-objective solution of home energy management systems," Energy, Elsevier, vol. 253(C).
    7. Zhu, Jiawei & Lin, Yishuai & Lei, Weidong & Liu, Youquan & Tao, Mengling, 2019. "Optimal household appliances scheduling of multiple smart homes using an improved cooperative algorithm," Energy, Elsevier, vol. 171(C), pages 944-955.
    8. Yu, Biying & Sun, Feihu & Chen, Chen & Fu, Guanpeng & Hu, Lin, 2022. "Power demand response in the context of smart home application," Energy, Elsevier, vol. 240(C).
    9. Vijayan, Vineeth & Mohapatra, Abheejeet & Singh, S.N., 2021. "Demand Response with Volt/Var Optimization for unbalanced active distribution systems," Applied Energy, Elsevier, vol. 300(C).
    10. Hlalele, Thabo G. & Zhang, Jiangfeng & Naidoo, Raj M. & Bansal, Ramesh C., 2021. "Multi-objective economic dispatch with residential demand response programme under renewable obligation," Energy, Elsevier, vol. 218(C).
    11. Soares, Ana & Antunes, Carlos Henggeler & Oliveira, Carlos & Gomes, Álvaro, 2014. "A multi-objective genetic approach to domestic load scheduling in an energy management system," Energy, Elsevier, vol. 77(C), pages 144-152.
    12. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).
    13. Wang, Peiguang & Zhang, Zhaoyan & Fu, Lei & Ran, Ning, 2021. "Optimal design of home energy management strategy based on refined load model," Energy, Elsevier, vol. 218(C).
    14. Wang, Yongli & Ma, Yuze & Song, Fuhao & Ma, Yang & Qi, Chengyuan & Huang, Feifei & Xing, Juntai & Zhang, Fuwei, 2020. "Economic and efficient multi-objective operation optimization of integrated energy system considering electro-thermal demand response," Energy, Elsevier, vol. 205(C).
    15. Haider, Haider Tarish & Muhsen, Dhiaa Halboot & Al-Nidawi, Yaarob Mahjoob & Khatib, Tamer & See, Ong Hang, 2022. "A novel approach for multi-objective cost-peak optimization for demand response of a residential area in smart grids," Energy, Elsevier, vol. 254(PB).
    16. Rajani, B. & Kommula, Bapayya Naidu, 2022. "An optimal energy management among the electric vehicle charging stations and electricity distribution system using GPC-RERNN approach," Energy, Elsevier, vol. 245(C).
    17. Sarker, Eity & Seyedmahmoudian, Mehdi & Jamei, Elmira & Horan, Ben & Stojcevski, Alex, 2020. "Optimal management of home loads with renewable energy integration and demand response strategy," Energy, Elsevier, vol. 210(C).
    18. Nizami, M.S.H. & Hossain, M.J. & Amin, B.M. Ruhul & Fernandez, Edstan, 2020. "A residential energy management system with bi-level optimization-based bidding strategy for day-ahead bi-directional electricity trading," Applied Energy, Elsevier, vol. 261(C).
    19. Pamulapati, Trinadh & Mallipeddi, Rammohan & Lee, Minho, 2020. "Multi-objective home appliance scheduling with implicit and interactive user satisfaction modelling," Applied Energy, Elsevier, vol. 267(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R, Revathi & N, Senthilnathan & V, Kumar Chinnaiyan, 2024. "Hybrid optimization approach for power scheduling with PV-battery system in smart grids," Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    2. Haider, Haider Tarish & Muhsen, Dhiaa Halboot & Al-Nidawi, Yaarob Mahjoob & Khatib, Tamer & See, Ong Hang, 2022. "A novel approach for multi-objective cost-peak optimization for demand response of a residential area in smart grids," Energy, Elsevier, vol. 254(PB).
    3. Lu, Qing & Guo, Qisheng & Zeng, Wei, 2022. "Optimization scheduling of integrated energy service system in community: A bi-layer optimization model considering multi-energy demand response and user satisfaction," Energy, Elsevier, vol. 252(C).
    4. Shen, Ziqi & Wei, Wei & Wu, Lei & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Economic dispatch of power systems with LMP-dependent demands: A non-iterative MILP model," Energy, Elsevier, vol. 233(C).
    5. Nirbheram, Joshi Sukhdev & Mahesh, Aeidapu & Bhimaraju, Ambati, 2023. "Techno-economic analysis of grid-connected hybrid renewable energy system adapting hybrid demand response program and novel energy management strategy," Renewable Energy, Elsevier, vol. 212(C), pages 1-16.
    6. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).
    7. Nguyen, Hai-Tra & Safder, Usman & Loy-Benitez, Jorge & Yoo, ChangKyoo, 2022. "Optimal demand side management scheduling-based bidirectional regulation of energy distribution network for multi-residential demand response with self-produced renewable energy," Applied Energy, Elsevier, vol. 322(C).
    8. Zhao, Liyuan & Yang, Ting & Li, Wei & Zomaya, Albert Y., 2022. "Deep reinforcement learning-based joint load scheduling for household multi-energy system," Applied Energy, Elsevier, vol. 324(C).
    9. Kanakadhurga, Dharmaraj & Prabaharan, Natarajan, 2024. "Smart home energy management using demand response with uncertainty analysis of electric vehicle in the presence of renewable energy sources," Applied Energy, Elsevier, vol. 364(C).
    10. Dewangan, Chaman Lal & Vijayan, Vineeth & Shukla, Devesh & Chakrabarti, S. & Singh, S.N. & Sharma, Ankush & Hossain, Md. Alamgir, 2023. "An improved decentralized scheme for incentive-based demand response from residential customers," Energy, Elsevier, vol. 284(C).
    11. Xu, Bo & Wang, Jiexin & Guo, Mengyuan & Lu, Jiayu & Li, Gehui & Han, Liang, 2021. "A hybrid demand response mechanism based on real-time incentive and real-time pricing," Energy, Elsevier, vol. 231(C).
    12. Wei, Congying & Wu, Qiuwei & Xu, Jian & Sun, Yuanzhang & Jin, Xiaolong & Liao, Siyang & Yuan, Zhiyong & Yu, Li, 2020. "Distributed scheduling of smart buildings to smooth power fluctuations considering load rebound," Applied Energy, Elsevier, vol. 276(C).
    13. Sasaki, Kento & Aki, Hirohisa & Ikegami, Takashi, 2022. "Application of model predictive control to grid flexibility provision by distributed energy resources in residential dwellings under uncertainty," Energy, Elsevier, vol. 239(PB).
    14. Li, Xiaozhu & Wang, Weiqing & Wang, Haiyun, 2021. "Hybrid time-scale energy optimal scheduling strategy for integrated energy system with bilateral interaction with supply and demand," Applied Energy, Elsevier, vol. 285(C).
    15. Rawat, Tanuj & Niazi, K.R. & Gupta, Nikhil & Sharma, Sachin, 2022. "A linearized multi-objective Bi-level approach for operation of smart distribution systems encompassing demand response," Energy, Elsevier, vol. 238(PC).
    16. Mota, Bruno & Faria, Pedro & Vale, Zita, 2022. "Residential load shifting in demand response events for bill reduction using a genetic algorithm," Energy, Elsevier, vol. 260(C).
    17. Zhou, Kaile & Peng, Ning & Yin, Hui & Hu, Rong, 2023. "Urban virtual power plant operation optimization with incentive-based demand response," Energy, Elsevier, vol. 282(C).
    18. Saberi-Beglar, Kasra & Zare, Kazem & Seyedi, Heresh & Marzband, Mousa & Nojavan, Sayyad, 2023. "Risk-embedded scheduling of a CCHP integrated with electric vehicle parking lot in a residential energy hub considering flexible thermal and electrical loads," Applied Energy, Elsevier, vol. 329(C).
    19. Xiong, Binyu & Wei, Feng & Wang, Yifei & Xia, Kairui & Su, Fuwen & Fang, Yingjia & Gao, Zuchang & Wei, Zhongbao, 2024. "Hybrid robust-stochastic optimal scheduling for multi-objective home energy management with the consideration of uncertainties," Energy, Elsevier, vol. 290(C).
    20. Yang, Dechang & Wang, Ming & Yang, Ruiqi & Zheng, Yingying & Pandzic, Hrvoje, 2021. "Optimal dispatching of an energy system with integrated compressed air energy storage and demand response," Energy, Elsevier, vol. 234(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222023428. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.