IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223020698.html
   My bibliography  Save this article

Optimization of a trigeneration cooling, heating, and power system with low-temperature waste heat from 4E points of view

Author

Listed:
  • Assareh, Ehsanolah
  • Kazemiani-Najafabadi, Parisa
  • Rad, Ehsan Amiri
  • Arabkoohsar, Ahmad

Abstract

Waste heat recovery from buildings and/or industrial processes for generating different kinds of energy such as electricity, cooling, and heating is very effective for achieving higher efficiency of supply, reduced energy consumption, and lower carbon footprint. In this research, a novel waste heat-driven combined Kalina-Organic Rankine Cycle system for simultaneous supply of cooling, heating, and power is proposed, optimized, and investigated. For this, based on a parametric study, the system is analyzed from a 4E (energy, exergy, economic, environmental) perspective. Then, the cycle is optimized by using response surface methodology and taking exergy and economic parameters as the objectives. The simulations are conducted in TRNSYS, and the design of experiments technique is used for finding the best combination of the design variables. The possibility of using the proposed Cogeneration Cooling, Heating and Power System (CCHPS) for providing the energy demand of some buildings in Dubai is investigated. The results reveal exergy efficiencies of 54.16%, a total cost of 23458.07 $/years for the designed cycle.

Suggested Citation

  • Assareh, Ehsanolah & Kazemiani-Najafabadi, Parisa & Rad, Ehsan Amiri & Arabkoohsar, Ahmad, 2023. "Optimization of a trigeneration cooling, heating, and power system with low-temperature waste heat from 4E points of view," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223020698
    DOI: 10.1016/j.energy.2023.128675
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223020698
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128675?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amiri Rad, Ehsan & Kazemiani-Najafabadi, Parisa, 2017. "Thermo-environmental and economic analyses of an integrated heat recovery steam-injected gas turbine," Energy, Elsevier, vol. 141(C), pages 1940-1954.
    2. Sharaf Eldean, Mohamed A. & Soliman, A.M., 2017. "A novel study of using oil refinery plants waste gases for thermal desalination and electric power generation: Energy, exergy & cost evaluations," Applied Energy, Elsevier, vol. 195(C), pages 453-477.
    3. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Dynamic simulation, energy and economic comparison between BIPV and BIPVT collectors coupled with micro-wind turbines," Energy, Elsevier, vol. 191(C).
    4. Ebrahimi, Khosrow & Jones, Gerard F. & Fleischer, Amy S., 2014. "A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 622-638.
    5. Satanphol, K. & Pridasawas, W. & Suphanit, B., 2017. "A study on optimal composition of zeotropic working fluid in an Organic Rankine Cycle (ORC) for low grade heat recovery," Energy, Elsevier, vol. 123(C), pages 326-339.
    6. Farahnak, Mehdi & Farzaneh-Gord, Mahmood & Deymi-Dashtebayaz, Mahdi & Dashti, Farshad, 2015. "Optimal sizing of power generation unit capacity in ICE-driven CCHP systems for various residential building sizes," Applied Energy, Elsevier, vol. 158(C), pages 203-219.
    7. Kumar, G. Praveen & Saravanan, R. & Coronas, Alberto, 2017. "Experimental studies on combined cooling and power system driven by low-grade heat sources," Energy, Elsevier, vol. 128(C), pages 801-812.
    8. Davoodi, Vajihe & Kazemiani-Najafabadi, Parisa & Amiri Rad, Ehsan, 2022. "Presenting a power and cascade cooling cycle driven using solar energy and natural gas," Renewable Energy, Elsevier, vol. 186(C), pages 802-813.
    9. Kazemiani-Najafabadi, Parisa & Amiri Rad, Ehsan & Simonson, Carey James, 2022. "Designing and thermodynamic optimization of a novel combined absorption cooling and power cycle based on a water-ammonia mixture," Energy, Elsevier, vol. 253(C).
    10. Wang, Shukun & Zhang, Lu & Liu, Chao & Liu, Zuming & Lan, Song & Li, Qibin & Wang, Xiaonan, 2021. "Techno-economic-environmental evaluation of a combined cooling heating and power system for gas turbine waste heat recovery," Energy, Elsevier, vol. 231(C).
    11. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    12. Kazemiani-Najafabadi, Parisa & Amiri Rad, Ehsan, 2020. "Optimization of an improved power cycle for geothermal applications in Iran," Energy, Elsevier, vol. 209(C).
    13. Sun, Liuli & Han, Wei & Jing, Xuye & Zheng, Danxing & Jin, Hongguang, 2013. "A power and cooling cogeneration system using mid/low-temperature heat source," Applied Energy, Elsevier, vol. 112(C), pages 886-897.
    14. Kheir Abadi, Majid & Davoodi, Vajihe & Deymi-Dashtebayaz, Mahdi & Ebrahimi-Moghadam, Amir, 2023. "Determining the best scenario for providing electrical, cooling, and hot water consuming of a building with utilizing a novel wind/solar-based hybrid system," Energy, Elsevier, vol. 273(C).
    15. Cao, Yan & Dhahad, Hayder A. & Hussen, Hasanen M. & Parikhani, Towhid, 2022. "Proposal and evaluation of two innovative combined gas turbine and ejector refrigeration cycles fueled by biogas: Thermodynamic and optimization analysis," Renewable Energy, Elsevier, vol. 181(C), pages 749-764.
    16. Pang, Kang Ying & Liew, Peng Yen & Woon, Kok Sin & Ho, Wai Shin & Wan Alwi, Sharifah Rafidah & Klemeš, Jiří Jaromír, 2023. "Multi-period multi-objective optimisation model for multi-energy urban-industrial symbiosis with heat, cooling, power and hydrogen demands," Energy, Elsevier, vol. 262(PA).
    17. Al-Sayyab, Ali Khalid Shaker & Mota-Babiloni, Adrián & Navarro-Esbrí, Joaquín, 2023. "Performance evaluation of modified compound organic Rankine-vapour compression cycle with two cooling levels, heating, and power generation," Applied Energy, Elsevier, vol. 334(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazemiani-Najafabadi, Parisa & Amiri Rad, Ehsan & Simonson, Carey James, 2022. "Designing and thermodynamic optimization of a novel combined absorption cooling and power cycle based on a water-ammonia mixture," Energy, Elsevier, vol. 253(C).
    2. Mahmoudi, S.M.S. & Akbari Kordlar, M., 2018. "A new flexible geothermal based cogeneration system producing power and refrigeration," Renewable Energy, Elsevier, vol. 123(C), pages 499-512.
    3. Huo, Erguang & Hu, Zheng & Wang, Shukun & Xin, Liyong & Bai, Mengna, 2022. "Thermal decomposition and interaction mechanism of HFC-227ea/n-hexane as a zeotropic working fluid for organic Rankine cycle," Energy, Elsevier, vol. 246(C).
    4. Woodland, Brandon J. & Ziviani, Davide & Braun, James E. & Groll, Eckhard A., 2020. "Considerations on alternative organic Rankine Cycle congurations for low-grade waste heat recovery," Energy, Elsevier, vol. 193(C).
    5. Zhang, Lijun & Chennells, Michael & Xia, Xiaohua, 2018. "A power dispatch model for a ferrochrome plant heat recovery cogeneration system," Applied Energy, Elsevier, vol. 227(C), pages 180-189.
    6. Deymi-Dashtebayaz, Mahdi & Norani, Marziye, 2021. "Sustainability assessment and emergy analysis of employing the CCHP system under two different scenarios in a data center," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Tian, Zhen & Gan, Wanlong & Qi, Zhixin & Tian, Molin & Gao, Wenzhong, 2022. "Experimental study of organic Rankine cycle with three-fluid recuperator for cryogenic cold energy recovery," Energy, Elsevier, vol. 242(C).
    8. Li, Jian & Hu, Shuozhuo & Yang, Fubin & Duan, Yuanyuan & Yang, Zhen, 2019. "Thermo-economic performance evaluation of emerging liquid-separated condensation method in single-pressure and dual-pressure evaporation organic Rankine cycle systems," Applied Energy, Elsevier, vol. 256(C).
    9. Davoodi, Vajihe & Kazemiani-Najafabadi, Parisa & Amiri Rad, Ehsan, 2022. "Presenting a power and cascade cooling cycle driven using solar energy and natural gas," Renewable Energy, Elsevier, vol. 186(C), pages 802-813.
    10. Braimakis, Konstantinos & Mikelis, Angelos & Charalampidis, Antonios & Karellas, Sotirios, 2020. "Exergetic performance of CO2 and ultra-low GWP refrigerant mixtures as working fluids in ORC for waste heat recovery," Energy, Elsevier, vol. 203(C).
    11. Kazemiani-Najafabadi, Parisa & Amiri Rad, Ehsan, 2021. "Multi-objective optimization of a novel offshore CHP plant based on a 3E analysis," Energy, Elsevier, vol. 224(C).
    12. Zhou, Jincheng & Hai, Tao & Ali, Masood Ashraf & Shamseldin, Mohamed A. & Almojil, Sattam Fahad & Almohana, Abdulaziz Ibrahim & Alali, Abdulrhman Fahmi, 2023. "Waste heat recovery of a wind turbine for poly-generation purpose: Feasibility analysis, environmental impact assessment, and parametric optimization," Energy, Elsevier, vol. 263(PD).
    13. Tayyeban, Edris & Deymi-Dashtebayaz, Mahdi & Gholizadeh, Mohammad, 2021. "Investigation of a new heat recovery system for simultaneously producing power, cooling and distillate water," Energy, Elsevier, vol. 229(C).
    14. Marshall, Z.M. & Duquette, J., 2022. "A techno-economic evaluation of low global warming potential heat pump assisted organic Rankine cycle systems for data center waste heat recovery," Energy, Elsevier, vol. 242(C).
    15. Bamorovat Abadi, Gholamreza & Kim, Kyung Chun, 2017. "Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1000-1013.
    16. Christoph J.W. Kirmse & Oyeniyi A. Oyewunmi & Andrew J. Haslam & Christos N. Markides, 2016. "Comparison of a Novel Organic-Fluid Thermofluidic Heat Converter and an Organic Rankine Cycle Heat Engine," Energies, MDPI, vol. 9(7), pages 1-26, June.
    17. Qian, Xiaoyan & Dai, Jie & Jiang, Weimin & Cai, Helen & Ye, Xixi & Shahab Vafadaran, Mohammad, 2024. "Economic viability and investment returns of innovative geothermal tri-generation systems: A comparative study," Renewable Energy, Elsevier, vol. 226(C).
    18. Du, S. & Wang, R.Z. & Xia, Z.Z., 2015. "Graphical analysis on internal heat recovery of a single stage ammonia–water absorption refrigeration system," Energy, Elsevier, vol. 80(C), pages 687-694.
    19. Ding, Xingqi & Zhou, Yufei & Duan, Liqiang & Li, Da & Zheng, Nan, 2023. "Comprehensive performance investigation of a novel solar-assisted liquid air energy storage system with different operating modes in different seasons," Energy, Elsevier, vol. 284(C).
    20. Zhang, Zhaoli & Alelyani, Sami M. & Zhang, Nan & Zeng, Chao & Yuan, Yanping & Phelan, Patrick E., 2018. "Thermodynamic analysis of a novel sodium hydroxide-water solution absorption refrigeration, heating and power system for low-temperature heat sources," Applied Energy, Elsevier, vol. 222(C), pages 1-12.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223020698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.