IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i24p6411-d1548023.html
   My bibliography  Save this article

Research on the Economic Scheduling Problem of Cogeneration Based on the Improved Artificial Hummingbird Algorithm

Author

Listed:
  • Xiaohong Kong

    (School of Mechanical and Electrical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China)

  • Kunyan Li

    (School of Mechanical and Electrical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China)

  • Yihang Zhang

    (School of Mechanical and Electrical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China)

  • Guocai Tian

    (School of Mechanical and Electrical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China)

  • Ning Dong

    (School of Mechanical and Electrical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China)

Abstract

With the increasing application of Combined Heat and Power (CHP) units, Combined Heat and Power Economic Dispatch (CHPED) has emerged as a significant issue in power system operations. To address the complex CHPED problem, this paper proposes an effective economic dispatch method based on the Improved Artificial Hummingbird Algorithm (IAHA). Given the complex constraints of the CHPED problem and the presence of valve point effects and prohibited operating zones, it requires the algorithm to have high traversal capability in the solution space and be resistant to becoming trapped in local optima. IAHA has introduced two key improvements based on the characteristics of the CHPED problem and the shortcomings of the standard Artificial Hummingbird Algorithm (AHA). Firstly, IAHA uses chaotic mapping to initialize the initial population, enhancing the algorithm’s traversal capability. Second, the guided foraging of the standard AHA has been modified to enhance the algorithm’s ability to escape from local optima. Simulation experiments were conducted on CHP systems at three different scales: 7 units, 24 units, and 48 units. Compared to other algorithms reported in the literature, the IAHA algorithm reduces the cost in the three testing systems by up to USD 18.04, 232.7894, and 870.7461. Compared to other swarm intelligence algorithms reported in the literature, the IAHA algorithm demonstrates significant advantages in terms of convergence accuracy and convergence speed. These results confirm that the IAHA algorithm is effective in solving the CHPED problem while overcoming the limitations of the standard AHA.

Suggested Citation

  • Xiaohong Kong & Kunyan Li & Yihang Zhang & Guocai Tian & Ning Dong, 2024. "Research on the Economic Scheduling Problem of Cogeneration Based on the Improved Artificial Hummingbird Algorithm," Energies, MDPI, vol. 17(24), pages 1-29, December.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6411-:d:1548023
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/24/6411/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/24/6411/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wenqiang Yang & Yihang Zhang & Xinxin Zhu & Kunyan Li & Zhile Yang, 2024. "Research on Dynamic Economic Dispatch Optimization Problem Based on Improved Grey Wolf Algorithm," Energies, MDPI, vol. 17(6), pages 1-29, March.
    2. Yin, Linfei & Sun, Zhixiang, 2021. "Multi-layer distributed multi-objective consensus algorithm for multi-objective economic dispatch of large-scale multi-area interconnected power systems," Applied Energy, Elsevier, vol. 300(C).
    3. Kansal, Veenus & Dhillon, J.S., 2022. "Ameliorated artificial hummingbird algorithm for coordinated wind-solar-thermal generation scheduling problem in multiobjective framework," Applied Energy, Elsevier, vol. 326(C).
    4. Zhou, Tianmin & Chen, Jiamin & Xu, Xuancong & Ou, Zuhong & Yin, Hao & Luo, Jianqiang & Meng, Anbo, 2023. "A novel multi-agent based crisscross algorithm with hybrid neighboring topology for combined heat and power economic dispatch," Applied Energy, Elsevier, vol. 342(C).
    5. Zou, Dexuan & Li, Steven & Kong, Xiangyong & Ouyang, Haibin & Li, Zongyan, 2019. "Solving the combined heat and power economic dispatch problems by an improved genetic algorithm and a new constraint handling strategy," Applied Energy, Elsevier, vol. 237(C), pages 646-670.
    6. Wang, Shukun & Zhang, Lu & Liu, Chao & Liu, Zuming & Lan, Song & Li, Qibin & Wang, Xiaonan, 2021. "Techno-economic-environmental evaluation of a combined cooling heating and power system for gas turbine waste heat recovery," Energy, Elsevier, vol. 231(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Xiao & Feiyue Yang & Yong Yang & Che Chen & Wuer Ha, 2024. "A Sustainable Production Planning Scheme for New Energy Vehicles in China," Sustainability, MDPI, vol. 16(19), pages 1-24, September.
    2. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Dai, Zuocai & Yin, Xiaomin, 2024. "Investigating the performance of a gas turbine system combined with steam methane reforming as a thermochemical recuperator in a power, cooling, freshwater, and hydrogen production multigeneration sys," Energy, Elsevier, vol. 311(C).
    4. Zhang, Yagang & Wang, Hui & Wang, Jingchao & Cheng, Xiaodan & Wang, Tong & Zhao, Zheng, 2024. "Ensemble optimization approach based on hybrid mode decomposition and intelligent technology for wind power prediction system," Energy, Elsevier, vol. 292(C).
    5. Qian, Xiaoyan & Dai, Jie & Jiang, Weimin & Cai, Helen & Ye, Xixi & Shahab Vafadaran, Mohammad, 2024. "Economic viability and investment returns of innovative geothermal tri-generation systems: A comparative study," Renewable Energy, Elsevier, vol. 226(C).
    6. Rizk-Allah, Rizk M. & Hassanien, Aboul Ella & Snášel, Václav, 2022. "A hybrid chameleon swarm algorithm with superiority of feasible solutions for optimal combined heat and power economic dispatch problem," Energy, Elsevier, vol. 254(PC).
    7. Ahmed Ginidi & Abdallah Elsayed & Abdullah Shaheen & Ehab Elattar & Ragab El-Sehiemy, 2021. "An Innovative Hybrid Heap-Based and Jellyfish Search Algorithm for Combined Heat and Power Economic Dispatch in Electrical Grids," Mathematics, MDPI, vol. 9(17), pages 1-25, August.
    8. Fatemeh Marzbani & Akmal Abdelfatah, 2024. "Economic Dispatch Optimization Strategies and Problem Formulation: A Comprehensive Review," Energies, MDPI, vol. 17(3), pages 1-31, January.
    9. Loau Al-Bahrani & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski, 2021. "Solving the Real Power Limitations in the Dynamic Economic Dispatch of Large-Scale Thermal Power Units under the Effects of Valve-Point Loading and Ramp-Rate Limitations," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    10. Donghui Wang & Chunming Liu, 2019. "Combination Optimization Configuration Method of Capacitance and Resistance Devices for Suppressing DC Bias in Transformers," Energies, MDPI, vol. 12(9), pages 1-13, May.
    11. Zou, Dexuan & Gong, Dunwei & Ouyang, Haibin, 2023. "The dynamic economic emission dispatch of the combined heat and power system integrated with a wind farm and a photovoltaic plant," Applied Energy, Elsevier, vol. 351(C).
    12. Zhou, Xu & Ma, Zhongjing & Zou, Suli & Zhang, Jinhui, 2022. "Consensus-based distributed economic dispatch for Multi Micro Energy Grid systems under coupled carbon emissions," Applied Energy, Elsevier, vol. 324(C).
    13. Paramjeet Kaur & Krishna Teerth Chaturvedi & Mohan Lal Kolhe, 2023. "Combined Heat and Power Economic Dispatching within Energy Network using Hybrid Metaheuristic Technique," Energies, MDPI, vol. 16(3), pages 1-17, January.
    14. Gong, Yu & Liu, Pan & Ming, Bo & Xu, Weifeng & Huang, Kangdi & Li, Xiao, 2021. "Deriving pack rules for hydro–photovoltaic hybrid power systems considering diminishing marginal benefit of energy," Applied Energy, Elsevier, vol. 304(C).
    15. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu & Shen, Boyang, 2022. "A 10 MW class data center with ultra-dense high-efficiency energy distribution: Design and economic evaluation of superconducting DC busbar networks," Energy, Elsevier, vol. 250(C).
    16. Zhou, Tianmin & Chen, Jiamin & Xu, Xuancong & Ou, Zuhong & Yin, Hao & Luo, Jianqiang & Meng, Anbo, 2023. "A novel multi-agent based crisscross algorithm with hybrid neighboring topology for combined heat and power economic dispatch," Applied Energy, Elsevier, vol. 342(C).
    17. Fang, Yi & Li, Xian & Ascher, Simon & Li, Yize & Dai, Leilei & Ruan, Roger & You, Siming, 2023. "Life cycle assessment and cost benefit analysis of concentrated solar thermal gasification of biomass for continuous electricity generation," Energy, Elsevier, vol. 284(C).
    18. Han, Xiaoqu & Dai, Yanbing & Guo, Xuanhua & Braimakis, Konstantinos & Karellas, Sotirios & Yan, Junjie, 2024. "A novel dual-stage intercooled and recuperative gas turbine system integrated with transcritical organic Rankine cycle: System modeling, energy and exergy analyses," Energy, Elsevier, vol. 305(C).
    19. Xianliang Liu & Haodong Chen & Jianyi Huang & Kaiming Qiao & Ziyuan Yu & Longlong Xie & Raju V. Ramanujan & Fengxia Hu & Ke Chu & Yi Long & Hu Zhang, 2023. "High-performance thermomagnetic generator controlled by a magnetocaloric switch," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Xu Chen & Shuai Fang & Kangji Li, 2023. "Reinforcement-Learning-Based Multi-Objective Differential Evolution Algorithm for Large-Scale Combined Heat and Power Economic Emission Dispatch," Energies, MDPI, vol. 16(9), pages 1-23, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6411-:d:1548023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.