IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v305y2024ics0360544224020334.html
   My bibliography  Save this article

An effective dual-objective optimization to enhance power generation in a two-stage grid-tied PV system under partial shading conditions

Author

Listed:
  • K.T., Swetha
  • Reddy, B. Venugopal

Abstract

Partial shading conditions (PSC) reduce the maximum output power from the photovoltaic (PV) array and introduce multiple peaks in the power–voltage curve. Therefore, the dynamic PV array reconfiguration approach is established as an effective method for obtaining irradiance equalization to maximize the output power under PSC. This paper proposes a dual-objective approach based on the spotted hyena optimization using a non-linear convergence factor (SHO-NCF) for (a) optimal reconfiguration of PV array and (b) maximum power point tracking with a minimum tracking period and negligible steady-state oscillations under PSC. A novel objective function is introduced to optimize the switching matrix to achieve irradiance equalization. To demonstrate the effectiveness of the proposed algorithm, simulations and experimental investigations have been performed. Further, the outcomes are compared with a traditional perturb and observe, particle swarm optimization, munkres algorithm, maximum–minimum tier equalization swapping method, and spotted hyena optimization. Performance analyses based on energy saving and income generation are performed to assess the efficacy of the proposed technique. Furthermore, the proposed algorithm is implemented for a single-phase, two-stage grid-connected PV system. Moreover, the maximum power generation increased to 18.166% by the proposed dual objective method compared to before reconfiguration.

Suggested Citation

  • K.T., Swetha & Reddy, B. Venugopal, 2024. "An effective dual-objective optimization to enhance power generation in a two-stage grid-tied PV system under partial shading conditions," Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224020334
    DOI: 10.1016/j.energy.2024.132259
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224020334
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132259?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deshkar, Shubhankar Niranjan & Dhale, Sumedh Bhaskar & Mukherjee, Jishnu Shekar & Babu, T. Sudhakar & Rajasekar, N., 2015. "Solar PV array reconfiguration under partial shading conditions for maximum power extraction using genetic algorithm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 102-110.
    2. Belhaouas, N. & Cheikh, M.-S. Ait & Agathoklis, P. & Oularbi, M.-R. & Amrouche, B. & Sedraoui, K. & Djilali, N., 2017. "PV array power output maximization under partial shading using new shifted PV array arrangements," Applied Energy, Elsevier, vol. 187(C), pages 326-337.
    3. Salam, Zainal & Ahmed, Jubaer & Merugu, Benny S., 2013. "The application of soft computing methods for MPPT of PV system: A technological and status review," Applied Energy, Elsevier, vol. 107(C), pages 135-148.
    4. Wang, Qin & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu & Yang, Xiaobo & Xie, Hailian & Huang, Xing, 2020. "Dynamic modeling and small signal stability analysis of distributed photovoltaic grid-connected system with large scale of panel level DC optimizers," Applied Energy, Elsevier, vol. 259(C).
    5. Satpathy, Priya Ranjan & Sharma, Renu & Dash, Sambit, 2019. "An efficient SD-PAR technique for maximum power generation from modules of partially shaded PV arrays," Energy, Elsevier, vol. 175(C), pages 182-194.
    6. Tabanjat, Abdulkader & Becherif, Mohamed & Hissel, Daniel, 2015. "Reconfiguration solution for shaded PV panels using switching control," Renewable Energy, Elsevier, vol. 82(C), pages 4-13.
    7. Adefarati, T. & Bansal, R.C., 2017. "Reliability assessment of distribution system with the integration of renewable distributed generation," Applied Energy, Elsevier, vol. 185(P1), pages 158-171.
    8. Meerimatha, G. & Rao, B. Loveswara, 2020. "Novel reconfiguration approach to reduce line losses of the photovoltaic array under various shading conditions," Energy, Elsevier, vol. 196(C).
    9. Pillai, Dhanup S. & Ram, J. Prasanth & Shabunko, Veronika & Kim, Young-Jin, 2021. "A new shade dispersion technique compatible for symmetrical and unsymmetrical photovoltaic (PV) arrays," Energy, Elsevier, vol. 225(C).
    10. Rizzo, Santi Agatino & Scelba, Giacomo, 2015. "ANN based MPPT method for rapidly variable shading conditions," Applied Energy, Elsevier, vol. 145(C), pages 124-132.
    11. Liu, Yang & Sun, Kangwen & Xu, Ziyuan & Lv, Mingyun, 2022. "Energy efficiency assessment of photovoltaic array on the stratospheric airship under partial shading conditions," Applied Energy, Elsevier, vol. 325(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    2. Pillai, Dhanup S. & Ram, J. Prasanth & Shabunko, Veronika & Kim, Young-Jin, 2021. "A new shade dispersion technique compatible for symmetrical and unsymmetrical photovoltaic (PV) arrays," Energy, Elsevier, vol. 225(C).
    3. Belhaouas, N. & Cheikh, M.-S. Ait & Agathoklis, P. & Oularbi, M.-R. & Amrouche, B. & Sedraoui, K. & Djilali, N., 2017. "PV array power output maximization under partial shading using new shifted PV array arrangements," Applied Energy, Elsevier, vol. 187(C), pages 326-337.
    4. Bradai, R. & Boukenoui, R. & Kheldoun, A. & Salhi, H. & Ghanes, M. & Barbot, J-P. & Mellit, A., 2017. "Experimental assessment of new fast MPPT algorithm for PV systems under non-uniform irradiance conditions," Applied Energy, Elsevier, vol. 199(C), pages 416-429.
    5. Aljafari, Belqasem & Satpathy, Priya Ranjan & Thanikanti, Sudhakar Babu, 2022. "Partial shading mitigation in PV arrays through dragonfly algorithm based dynamic reconfiguration," Energy, Elsevier, vol. 257(C).
    6. Ram, J. Prasanth & Babu, T. Sudhakar & Rajasekar, N., 2017. "A comprehensive review on solar PV maximum power point tracking techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 826-847.
    7. Astitva Kumar & Mohammad Rizwan & Uma Nangia & Muhannad Alaraj, 2021. "Grey Wolf Optimizer-Based Array Reconfiguration to Enhance Power Production from Solar Photovoltaic Plants under Different Scenarios," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    8. Bouselham, Loubna & Rabhi, Abdelhamid & Hajji, Bekkay & Mellit, Adel, 2021. "Photovoltaic array reconfiguration method based on fuzzy logic and recursive least squares: An experimental validation," Energy, Elsevier, vol. 232(C).
    9. Murugesan, Palpandian & David, Prince Winston & Murugesan, Pravin & Periyasamy, Pounraj, 2023. "Battery based mismatch reduction technique for partial shaded solar PV system," Energy, Elsevier, vol. 272(C).
    10. Wang, Qin & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu & Yang, Xiaobo & Xie, Hailian & Huang, Xing, 2020. "Dynamic modeling and small signal stability analysis of distributed photovoltaic grid-connected system with large scale of panel level DC optimizers," Applied Energy, Elsevier, vol. 259(C).
    11. Li, Shaowu, 2016. "Linear equivalent models at the maximum power point based on variable weather parameters for photovoltaic cell," Applied Energy, Elsevier, vol. 182(C), pages 94-104.
    12. Belkaid, A. & Colak, I. & Isik, O., 2016. "Photovoltaic maximum power point tracking under fast varying of solar radiation," Applied Energy, Elsevier, vol. 179(C), pages 523-530.
    13. Abu Eldahab, Yasser E. & Saad, Naggar H. & Zekry, Abdalhalim, 2017. "Enhancing the tracking techniques for the global maximum power point under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1173-1183.
    14. Luis D. Murillo-Soto & Carlos Meza, 2021. "Automated Fault Management System in a Photovoltaic Array: A Reconfiguration-Based Approach," Energies, MDPI, vol. 14(9), pages 1-19, April.
    15. Yadav, Anurag Singh & Mukherjee, V., 2022. "Comprehensive investigation of various bypass diode associations for killer-SuDoKu PV array under several shading conditions," Energy, Elsevier, vol. 239(PB).
    16. Chayut Tubniyom & Rongrit Chatthaworn & Amnart Suksri & Tanakorn Wongwuttanasatian, 2018. "Minimization of Losses in Solar Photovoltaic Modules by Reconfiguration under Various Patterns of Partial Shading," Energies, MDPI, vol. 12(1), pages 1-15, December.
    17. Hong, Ying-Yi & Beltran, Angelo A. & Paglinawan, Arnold C., 2018. "A robust design of maximum power point tracking using Taguchi method for stand-alone PV system," Applied Energy, Elsevier, vol. 211(C), pages 50-63.
    18. Yang, Bo & Zeng, Chunyuan & Li, Danyang & Guo, Zhengxun & Chen, Yijun & Shu, Hongchun & Cao, Pulin & Li, Zilin, 2022. "Improved immune genetic algorithm based TEG system reconfiguration under non-uniform temperature distribution," Applied Energy, Elsevier, vol. 325(C).
    19. Sai Krishna, G. & Moger, Tukaram, 2021. "A novel adaptive dynamic photovoltaic reconfiguration system to mitigate mismatch effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    20. Osmani, Khaled & Haddad, Ahmad & Lemenand, Thierry & Castanier, Bruno & Ramadan, Mohamad, 2021. "An investigation on maximum power extraction algorithms from PV systems with corresponding DC-DC converters," Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:305:y:2024:i:c:s0360544224020334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.