IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v188y2019icp393-397.html
   My bibliography  Save this article

Reliability and optimal replacement policy for a k-out-of-n system subject to shocks

Author

Listed:
  • Eryilmaz, Serkan
  • Devrim, Yilser

Abstract

Consider a k-out-of-n system which is subject to shocks that occur at random times. Each shock causes failure of random number of components, and hence the system’s lifetime corresponds to one of the arrival times of shocks. The reliability and mean time to failure of the system are studied when the times between shocks follow a phase type distribution. The optimal replacement time problem which is concerned with the minimization of the total long-run average cost per unit time is also defined and studied.

Suggested Citation

  • Eryilmaz, Serkan & Devrim, Yilser, 2019. "Reliability and optimal replacement policy for a k-out-of-n system subject to shocks," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 393-397.
  • Handle: RePEc:eee:reensy:v:188:y:2019:i:c:p:393-397
    DOI: 10.1016/j.ress.2019.03.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201831384X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.03.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eryilmaz, Serkan, 2018. "The number of failed components in a k-out-of-n system consisting of multiple types of components," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 246-250.
    2. Huang, Xianzhen & Jin, Sujun & He, Xuefeng & He, David, 2019. "Reliability analysis of coherent systems subject to internal failures and external shocks," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 75-83.
    3. Wang, Junye, 2015. "Barriers of scaling-up fuel cells: Cost, durability and reliability," Energy, Elsevier, vol. 80(C), pages 509-521.
    4. Cong Lin & Lirong Cui & David Coit & Min Lv, 2017. "An approximation method for evaluating the reliability of a dynamic k-out-of-n:F system subjected to cyclic alternating operation conditions," Journal of Risk and Reliability, , vol. 231(2), pages 109-120, April.
    5. Zhao, Xian & Guo, Xiaoxin & Wang, Xiaoyue, 2018. "Reliability and maintenance policies for a two-stage shock model with self-healing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 185-194.
    6. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2017. "Redundancy optimization for series-parallel phased mission systems exposed to random shocks," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 554-560.
    7. Lirong Cui & Hongda Gao & Yuchang Mo, 2018. "Reliability for k-out-of-n:F balanced systems with m sectors," IISE Transactions, Taylor & Francis Journals, vol. 50(5), pages 381-393, May.
    8. Zhang, Nan & Fouladirad, Mitra & Barros, Anne, 2019. "Reliability-based measures and prognostic analysis of a K-out-of-N system in a random environment," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1120-1131.
    9. Zhang, Jianchun & Zhao, Yu & Ma, Xiaobing, 2019. "A new reliability analysis method for load-sharing k-out-of-n: F system based on load-strength model," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 152-165.
    10. Zhang, Yiying, 2018. "Optimal allocation of active redundancies in weighted k-out-of-n systems," Statistics & Probability Letters, Elsevier, vol. 135(C), pages 110-117.
    11. Wang, Junye, 2017. "System integration, durability and reliability of fuel cells: Challenges and solutions," Applied Energy, Elsevier, vol. 189(C), pages 460-479.
    12. Wang, Guanjun & Peng, Rui & Xing, Liudong, 2018. "Reliability evaluation of unrepairable k-out-of-n: G systems with phased-mission requirements based on record values," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 191-197.
    13. Cui, Lirong & Wu, Bei, 2019. "Extended Phase-type models for multistate competing risk systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 1-16.
    14. Li, Xiang-Yu & Li, Yan-Feng & Huang, Hong-Zhong & Zio, Enrico, 2018. "Reliability assessment of phased-mission systems under random shocks," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 352-361.
    15. Levitin, Gregory & Finkelstein, Maxim, 2017. "Optimal backup in heterogeneous standby systems exposed to shocks," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 336-344.
    16. Mo, Yuchang & Xing, Liudong & Cui, Lirong & Si, Shubin, 2017. "MDD-based performability analysis of multi-state linear consecutive-k-out-of-n: F systems," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 124-131.
    17. Levitin, Gregory & Finkelstein, Maxim, 2017. "Effect of element separation in series-parallel systems exposed to random shocks," European Journal of Operational Research, Elsevier, vol. 260(1), pages 305-315.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Chaonan & Wang, Xiaolei & Xing, Liudong & Guan, Quanlong & Yang, Chunhui & Yu, Min, 2021. "A Fast and Accurate Reliability Approximation Method for Heterogeneous Cold Standby Sparing Systems," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    2. Eryilmaz, Serkan & Kan, Cihangir, 2019. "Reliability and optimal replacement policy for an extreme shock model with a change point," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    3. Wang, Xiaoyue & Ning, Ru & Zhao, Xian & Zhou, Jian, 2022. "Reliability analyses of k-out-of-n: F capability-balanced systems in a multi-source shock environment," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    4. Wang, Xiaoyue & Zhao, Xian & Wang, Siqi & Sun, Leping, 2020. "Reliability and maintenance for performance-balanced systems operating in a shock environment," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    5. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Heterogeneous 1-out-of-n standby systems with limited unit operation time," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    6. Safaei, Fatemeh & Ahmadi, Jafar & Taghipour, Sharareh, 2022. "A maintenance policy for a k-out-of-n system under enhancing the system’s operating time and safety constraints, and selling the second-hand components," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    7. María Luz Gámiz & Delia Montoro-Cazorla & María del Carmen Segovia-García & Rafael Pérez-Ocón, 2022. "MoMA Algorithm: A Bottom-Up Modeling Procedure for a Modular System under Environmental Conditions," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
    8. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Optimal sequencing of elements activation in 1-out-of-n warm standby system with storage," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    9. Alkaff, Abdullah & Qomarudin, Mochamad Nur & Bilfaqih, Yusuf, 2021. "Network reliability analysis: matrix-exponential approach," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    10. Wu, Bei & Ding, Dong, 2022. "A gamma process based model for systems subject to multiple dependent competing failure processes under Markovian environments," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    11. Lyu, Hao & Qu, Hongchen & Yang, Zaiyou & Ma, Li & Lu, Bing & Pecht, Michael, 2023. "Reliability analysis of dependent competing failure processes with time-varying δ shock model," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    12. Alkaff, Abdullah & Qomarudin, Mochamad Nur & Bilfaqih, Yusuf, 2020. "Network reliability analysis: Matrix-exponential approach," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    13. Zhao, Fei & Peng, Rui & Zhang, Nan, 2023. "Inspection policy optimization for a k-out-of-n/Cl(k′,n′;F) system considering failure dependence: a case study," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    14. Yin, Juan & Cui, Lirong & Sun, Yudao & Balakrishnan, Narayanaswamy, 2022. "Reliability modelling for linear and circular k-out-of-n: F systems with shared components," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    15. Vasileios M. Koutras & Markos V. Koutras & Spiros D. Dafnis, 2022. "A Family of Induced Distributions," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1833-1848, September.
    16. Wang, Xiaoyue & Zhao, Xian & Wu, Congshan & Wang, Siqi, 2022. "Mixed shock model for multi-state weighted k-out-of-n: F systems with degraded resistance against shocks," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    17. Liu, Baoliang & Wen, Yanqing & Qiu, Qingan & Shi, Haiyan & Chen, Jianhui, 2022. "Reliability analysis for multi-state systems under K-mixed redundancy strategy considering switching failure," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    18. Ma, Chenyang & Wang, Qiyu & Cai, Zhiqiang & Si, Shubin & Zhao, Jiangbin, 2021. "Component reassignment for reliability optimization of reconfigurable systems considering component degradation," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    19. Fu, Yuqiang & Zhu, Xiaoyan, 2023. "A joint age-based system replacement and component reallocation maintenance policy: Optimization, analysis and resilience," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    20. Yu, Xiaoyun & Hu, Linmin & Ma, Mengrao, 2023. "Reliability measures of discrete time k-out-of-n: G retrial systems based on Bernoulli shocks," Reliability Engineering and System Safety, Elsevier, vol. 239(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eryilmaz, Serkan & Kan, Cihangir, 2019. "Reliability and optimal replacement policy for an extreme shock model with a change point," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    2. Cheng, Chen & Yang, Jun & Li, Lei, 2021. "Reliability evaluation of a k-out-of-n(G)-subsystem based multi-state phased mission system with common bus performance sharing subjected to common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Nan Zhang & Sen Tian & Le Li & Zhongbin Wang & Jun Zhang, 2023. "Maintenance analysis of a partial observable K-out-of-N system with load sharing units," Journal of Risk and Reliability, , vol. 237(4), pages 703-713, August.
    4. Cheng, Chen & Yang, Jun & Li, Lei, 2020. "Reliability assessment of multi-state phased mission systems with common bus performance sharing considering transmission loss and performance storage," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    5. Zhao, Xian & Wang, Siqi & Wang, Xiaoyue & Fan, Yu, 2020. "Multi-state balanced systems in a shock environment," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    6. Peng, Rui & Wu, Di & Xiao, Hui & Xing, Liudong & Gao, Kaiye, 2019. "Redundancy versus protection for a non-reparable phased-mission system subject to external impacts," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    7. Zhang, Jianchun & Zhao, Yu & Ma, Xiaobing, 2020. "Reliability modeling methods for load-sharing k-out-of-n system subject to discrete external load," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    8. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    9. Dong Lyu & Shubin Si & Zhiqiang Cai & Liyang Xie, 2020. "Computational method for importance measure of the k-out-of-n system based on stress–strength interference," Journal of Risk and Reliability, , vol. 234(1), pages 27-40, February.
    10. Liu, Yu & Chen, Yiming & Jiang, Tao, 2020. "Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 166-181.
    11. Jorgen Vitting Andersen & Roy Cerqueti & Jessica Riccioni, 2021. "Rational expectations as a tool for predicting failure of weighted k-out-of-n reliability systems," Papers 2112.10672, arXiv.org.
    12. Fang, Chen & Cui, Lirong, 2021. "Balanced Systems by Considering Multi-state Competing Risks Under Degradation Processes," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    13. Eryilmaz, Serkan & Ucum, Kaan Ayberk, 2021. "The lost capacity by the weighted k-out-of-n system upon system failure," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    14. Lin, Cong & Zeng, Zhaoyang & Zhou, Yan & Xu, Ming & Ren, Zhanyong, 2019. "A lower bound of reliability calculating method for lattice system with non-homogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 36-46.
    15. Gregory Levitin & Maxim Finkelstein, 2018. "Optimal mission abort policy with multiple shock number thresholds," Journal of Risk and Reliability, , vol. 232(6), pages 607-615, December.
    16. Wu, Congshan & Zhao, Xian & Qiu, Qingan & Sun, Jinglei, 2021. "Optimal mission abort policy for k-out-of-n: F balanced systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    17. Wang, Chaonan & Xing, Liudong & Amari, Suprasad V. & Tang, Bo, 2020. "Efficient reliability analysis of dynamic k-out-of-n heterogeneous phased-mission systems," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    18. Roy Cerqueti, 2022. "A new concept of reliability system and applications in finance," Annals of Operations Research, Springer, vol. 312(1), pages 45-64, May.
    19. Jiang, Shan & Jia, Xujie, 2024. "Reliability assessment under continuous fatigue degradation and shock based on Markov renewal process," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    20. Xiao, Hui & Lin, Chen & Kou, Gang & Peng, Rui, 2022. "Reliability modeling and configuration optimization of a photovoltaic based electric power generation system," Reliability Engineering and System Safety, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:188:y:2019:i:c:p:393-397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.