IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v305y2022ics0306261921010825.html
   My bibliography  Save this article

Intelligent health states recognition of fuel cell by cell voltage consistency under typical operating parameters

Author

Listed:
  • Pang, Ran
  • Zhang, Caizhi
  • Dai, Haifeng
  • Bai, Yunfeng
  • Hao, Dong
  • Chen, Jinrui
  • Zhang, Bin

Abstract

In vehicular fuel cell, the change of operating parameters (pressure, temperature, humidity) may lead to health problem, which is a key parameter for fuel cell system shutdown. In this study, the health state of the proton exchange membrane fuel cell is recognized by considering several typical operating parameters. The cell voltage consistency (spatial fluctuation degree) is used to characterize the health state of fuel cell. Specifically, the health state of the minimum cell voltage is also considered. The process of health states labeling is achieved with the non-parametric statistics and unsupervised learning methods by calculating the threshold values for health evaluation indexes. Moreover, a variety of feature selection methods are applied to select the features which have relatively significant on health of fuel cell for improving the efficiency of health recognition. In addition, the random forest algorithm is used to identify the health state of based on the results of feature selection. The main results show that the relatively optimal features are temperature, current, cathode stoichiometry and pressure, respectively. Furthermore, the accuracy rate of random forest algorithm achieves to 95.04%. The effectiveness of the proposed methods is validated under operation condition of low current density and various temperatures by the results of dynamic loading experiments. The presented method of health recognition can be used to health management of fuel cell vehicle.

Suggested Citation

  • Pang, Ran & Zhang, Caizhi & Dai, Haifeng & Bai, Yunfeng & Hao, Dong & Chen, Jinrui & Zhang, Bin, 2022. "Intelligent health states recognition of fuel cell by cell voltage consistency under typical operating parameters," Applied Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921010825
    DOI: 10.1016/j.apenergy.2021.117735
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921010825
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117735?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
    2. Komini Babu, S. & Spernjak, D. & Dillet, J. & Lamibrac, A. & Maranzana, G. & Didierjean, S. & Lottin, O. & Borup, R.L. & Mukundan, R., 2019. "Spatially resolved degradation during startup and shutdown in polymer electrolyte membrane fuel cell operation," Applied Energy, Elsevier, vol. 254(C).
    3. Park, Jin Young & Lim, In Seop & Choi, Eun Jung & Kim, Min Soo, 2021. "Fault diagnosis of thermal management system in a polymer electrolyte membrane fuel cell," Energy, Elsevier, vol. 214(C).
    4. Chen, Huicui & He, Yuxiang & Zhang, Xinfeng & Zhao, Xin & Zhang, Tong & Pei, Pucheng, 2018. "A method to study the intake consistency of the dual-stack polymer electrolyte membrane fuel cell system under dynamic operating conditions," Applied Energy, Elsevier, vol. 231(C), pages 1050-1058.
    5. Qiu, Diankai & Peng, Linfa & Lai, Xinmin & Ni, Meng & Lehnert, Werner, 2019. "Mechanical failure and mitigation strategies for the membrane in a proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. Li, Qi & Wang, Tianhong & Li, Shihan & Chen, Weirong & Liu, Hong & Breaz, Elena & Gao, Fei, 2021. "Online extremum seeking-based optimized energy management strategy for hybrid electric tram considering fuel cell degradation," Applied Energy, Elsevier, vol. 285(C).
    7. Pahon, E. & Yousfi Steiner, N. & Jemei, S. & Hissel, D. & Moçoteguy, P., 2016. "A signal-based method for fast PEMFC diagnosis," Applied Energy, Elsevier, vol. 165(C), pages 748-758.
    8. Gang Zheng & Boris Freidlin & Zhaohai Li & Joseph L. Gastwirth, 2005. "Genomic Control for Association Studies under Various Genetic Models," Biometrics, The International Biometric Society, vol. 61(1), pages 186-192, March.
    9. Song, Ke & Ding, Yuhang & Hu, Xiao & Xu, Hongjie & Wang, Yimin & Cao, Jing, 2021. "Degradation adaptive energy management strategy using fuel cell state-of-health for fuel economy improvement of hybrid electric vehicle," Applied Energy, Elsevier, vol. 285(C).
    10. Sun, Li & Shen, Jiong & Hua, Qingsong & Lee, Kwang Y., 2018. "Data-driven oxygen excess ratio control for proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 231(C), pages 866-875.
    11. Hu, Zunyan & Xu, Liangfei & Huang, Yiyuan & Li, Jianqiu & Ouyang, Minggao & Du, Xiaoli & Jiang, Hongliang, 2018. "Comprehensive analysis of galvanostatic charge method for fuel cell degradation diagnosis," Applied Energy, Elsevier, vol. 212(C), pages 1321-1332.
    12. Lin, Rui & Zhu, Yike & Ni, Meng & Jiang, Zhenghua & Lou, Diming & Han, Lihang & Zhong, Di, 2019. "Consistency analysis of polymer electrolyte membrane fuel cell stack during cold start," Applied Energy, Elsevier, vol. 241(C), pages 420-432.
    13. Yuan, Hao & Dai, Haifeng & Wei, Xuezhe & Ming, Pingwen, 2020. "A novel model-based internal state observer of a fuel cell system for electric vehicles using improved Kalman filter approach," Applied Energy, Elsevier, vol. 268(C).
    14. Zhang, Zehan & Li, Shuanghong & Xiao, Yawen & Yang, Yupu, 2019. "Intelligent simultaneous fault diagnosis for solid oxide fuel cell system based on deep learning," Applied Energy, Elsevier, vol. 233, pages 930-942.
    15. Zhang, Tong & Wang, Peiqi & Chen, Huicui & Pei, Pucheng, 2018. "A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition," Applied Energy, Elsevier, vol. 223(C), pages 249-262.
    16. Li, Zhongliang & Outbib, Rachid & Giurgea, Stefan & Hissel, Daniel & Giraud, Alain & Couderc, Pascal, 2019. "Fault diagnosis for fuel cell systems: A data-driven approach using high-precise voltage sensors," Renewable Energy, Elsevier, vol. 135(C), pages 1435-1444.
    17. Wu, Xiao-long & Xu, Yuan-Wu & Xue, Tao & Zhao, Dong-qi & Jiang, Jianhua & Deng, Zhonghua & Fu, Xiaowei & Li, Xi, 2019. "Health state prediction and analysis of SOFC system based on the data-driven entire stage experiment," Applied Energy, Elsevier, vol. 248(C), pages 126-140.
    18. Akim Adekpedjou & WITHANAGE A. De Mel & Gideon KD Zamba, 2015. "Data Dependent Cells Chi-Square Test With Recurrent Events," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1045-1064, December.
    19. Zou, Wei & Froning, Dieter & Shi, Yan & Lehnert, Werner, 2021. "An online adaptive model for the nonlinear dynamics of fuel cell voltage," Applied Energy, Elsevier, vol. 288(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Young Park, Jin & Seop Lim, In & Ho Lee, Yeong & Lee, Won-Yong & Oh, Hwanyeong & Soo Kim, Min, 2023. "Severity-based fault diagnostic method for polymer electrolyte membrane fuel cell systems," Applied Energy, Elsevier, vol. 332(C).
    2. Huang, Weifeng & Niu, Tong & Zhang, Caizhi & Fu, Zuhang & Zhang, Yuqi & Zhou, Weijiang & Pan, Zehua & Zhang, Kaiqing, 2023. "Experimental study of the performance degradation of proton exchange membrane fuel cell based on a multi-module stack under selected load profiles by clustering algorithm," Energy, Elsevier, vol. 270(C).
    3. Danqi Su & Jiayang Zheng & Junjie Ma & Zizhe Dong & Zhangjie Chen & Yanzhou Qin, 2023. "Application of Machine Learning in Fuel Cell Research," Energies, MDPI, vol. 16(11), pages 1-32, May.
    4. Deng, Shutong & Zhang, Jun & Zhang, Caizhi & Luo, Mengzhu & Ni, Meng & Li, Yu & Zeng, Tao, 2022. "Prediction and optimization of gas distribution quality for high-temperature PEMFC based on data-driven surrogate model," Applied Energy, Elsevier, vol. 327(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Junbo & Yang, Min & Ke, Changchun & Zhang, Junliang, 2020. "Control logics and strategies for air supply in PEM fuel cell engines," Applied Energy, Elsevier, vol. 269(C).
    2. Sanghyun Yun & Jinwon Yun & Jaeyoung Han, 2023. "Development of a 470-Horsepower Fuel Cell–Battery Hybrid Xcient Dynamic Model Using Simscape TM," Energies, MDPI, vol. 16(24), pages 1-22, December.
    3. Zuo, Jian & Lv, Hong & Zhou, Daming & Xue, Qiong & Jin, Liming & Zhou, Wei & Yang, Daijun & Zhang, Cunman, 2021. "Deep learning based prognostic framework towards proton exchange membrane fuel cell for automotive application," Applied Energy, Elsevier, vol. 281(C).
    4. Zhang, Caizhi & Zeng, Tao & Wu, Qi & Deng, Chenghao & Chan, Siew Hwa & Liu, Zhixiang, 2021. "Improved efficiency maximization strategy for vehicular dual-stack fuel cell system considering load state of sub-stacks through predictive soft-loading," Renewable Energy, Elsevier, vol. 179(C), pages 929-944.
    5. Young Park, Jin & Seop Lim, In & Ho Lee, Yeong & Lee, Won-Yong & Oh, Hwanyeong & Soo Kim, Min, 2023. "Severity-based fault diagnostic method for polymer electrolyte membrane fuel cell systems," Applied Energy, Elsevier, vol. 332(C).
    6. Wu, Ziyao & Pei, Pucheng & Xu, Huachi & Jia, Xiaoning & Ren, Peng & Wang, Bozheng, 2019. "Study on the effect of membrane electrode assembly parameters on polymer electrolyte membrane fuel cell performance by galvanostatic charging method," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Behzad Najafi & Paolo Bonomi & Andrea Casalegno & Fabio Rinaldi & Andrea Baricci, 2020. "Rapid Fault Diagnosis of PEM Fuel Cells through Optimal Electrochemical Impedance Spectroscopy Tests," Energies, MDPI, vol. 13(14), pages 1-19, July.
    8. Pei, Pucheng & Chen, Dongfang & Wu, Ziyao & Ren, Peng, 2019. "Nonlinear methods for evaluating and online predicting the lifetime of fuel cells," Applied Energy, Elsevier, vol. 254(C).
    9. Zhang, Xiaojie & Zhang, Tong & Chen, Huicui & Cao, Yinliang, 2021. "A review of online electrochemical diagnostic methods of on-board proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 286(C).
    10. Ren, Peng & Pei, Pucheng & Li, Yuehua & Wu, Ziyao & Chen, Dongfang & Huang, Shangwei & Jia, Xiaoning, 2019. "Diagnosis of water failures in proton exchange membrane fuel cell with zero-phase ohmic resistance and fixed-low-frequency impedance," Applied Energy, Elsevier, vol. 239(C), pages 785-792.
    11. Wu, Kangcheng & Du, Qing & Zu, Bingfeng & Wang, Yupeng & Cai, Jun & Gu, Xin & Xuan, Jin & Jiao, Kui, 2021. "Enabling real-time optimization of dynamic processes of proton exchange membrane fuel cell: Data-driven approach with semi-recurrent sliding window method," Applied Energy, Elsevier, vol. 303(C).
    12. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    13. Xu, Liangfei & Fang, Chuan & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2018. "Nonlinear dynamic mechanism modeling of a polymer electrolyte membrane fuel cell with dead-ended anode considering mass transport and actuator properties," Applied Energy, Elsevier, vol. 230(C), pages 106-121.
    14. Xu, Yuan-wu & Wu, Xiao-long & Zhong, Xiao-bo & Zhao, Dong-qi & Sorrentino, Marco & Jiang, Jianhua & Jiang, Chang & Fu, Xiaowei & Li, Xi, 2021. "Mechanism model-based and data-driven approach for the diagnosis of solid oxide fuel cell stack leakage," Applied Energy, Elsevier, vol. 286(C).
    15. Komini Babu, S. & Spernjak, D. & Dillet, J. & Lamibrac, A. & Maranzana, G. & Didierjean, S. & Lottin, O. & Borup, R.L. & Mukundan, R., 2019. "Spatially resolved degradation during startup and shutdown in polymer electrolyte membrane fuel cell operation," Applied Energy, Elsevier, vol. 254(C).
    16. Ma, Rui & Yang, Tao & Breaz, Elena & Li, Zhongliang & Briois, Pascal & Gao, Fei, 2018. "Data-driven proton exchange membrane fuel cell degradation predication through deep learning method," Applied Energy, Elsevier, vol. 231(C), pages 102-115.
    17. Zhang, Tong & Wang, Peiqi & Chen, Huicui & Pei, Pucheng, 2018. "A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition," Applied Energy, Elsevier, vol. 223(C), pages 249-262.
    18. Pei, Pucheng & Jia, Xiaoning & Xu, Huachi & Li, Pengcheng & Wu, Ziyao & Li, Yuehua & Ren, Peng & Chen, Dongfang & Huang, Shangwei, 2018. "The recovery mechanism of proton exchange membrane fuel cell in micro-current operation," Applied Energy, Elsevier, vol. 226(C), pages 1-9.
    19. Xia, Zhifeng & Chen, Huicui & Zhang, Ruirui & Weng, Qianyao & Zhang, Tong & Pei, Pucheng, 2023. "Behavior analysis of PEMFC with geometric configuration variation during multiple-step loading reduction process," Applied Energy, Elsevier, vol. 349(C).
    20. Pan, Mingzhang & Pan, Chengjie & Li, Chao & Zhao, Jian, 2021. "A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921010825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.