IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v357y2024ics0306261923017518.html
   My bibliography  Save this article

A complete physical 3D model from first principles of vibrational-powered electromagnetic generators

Author

Listed:
  • Vidal, João V.
  • Carneiro, Pedro M.R.
  • Soares dos Santos, Marco P.

Abstract

The dynamic behavior of a vibrational electromagnetic generator using a magnetic levitation architecture was theoretically and experimentally studied in great detail, when operating under a wide range of three-dimensional excitations. We developed a complete rigorous physical model from first principles based on the theory of electrodynamics of continua, centered on the laws of electrodynamics and balance of mass, linear momentum, angular momentum, energy and entropy. Local electromagnetic and gravitational body forces, couples and powers were considered, and the surface tractions were divided into constraint and friction components, as well as those due to external mechanical energy sources. The balance of linear momentum, angular momentum and circuit equations resulted in up to 13 non-linear differential equations describing the dynamics of the levitating-magnet and container, relating input forces and torques with output displacement, constraint forces and voltage. The balance of energy yielded a consistent equivalence between the time rate of change of the internal kinetic and potential energies of the generator and the output power, associated with the external circuit, Ohmic losses and friction losses, as well as the input mechanical power being supplied to the system by the environment. Both the input and output powers were proven to tend to increase equally when operating the generator under resonant conditions. The levitating generator was shown to be sensitive to axial translational and centrifugal inertial forces, each one effectively resulting in a uni-stable or bi-stable system. The dynamical response yielded multiple initial conditions dependent steady-states, hysteretic frequency output and chaotic characteristics. Relevant guidelines to optimize the energy conversion efficiency of energy harvesters are provided. This model was validated by experimental tests, including general 3D motions combining translations and rotations: cross-correlations exceeding 90% were achieved. Such Newtonian and Langrangian modelling approaches hold great potential to be easily adapted to a wide range of other electromagnetic generators, with multiple degrees-of-freedom and operating under various environments, such that significant advances in energy technologies can be supported.

Suggested Citation

  • Vidal, João V. & Carneiro, Pedro M.R. & Soares dos Santos, Marco P., 2024. "A complete physical 3D model from first principles of vibrational-powered electromagnetic generators," Applied Energy, Elsevier, vol. 357(C).
  • Handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923017518
    DOI: 10.1016/j.apenergy.2023.122387
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923017518
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122387?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lou, Hu & Wang, Tao & Zhu, Shiqiang, 2022. "Design, modeling and experiments of a novel biaxial-pendulum vibration energy harvester," Energy, Elsevier, vol. 254(PA).
    2. Sun, Yuhua & Wang, Ping & Lu, Jun & Xu, Jingmang & Wang, Peigen & Xie, Shouyong & Li, Yunwu & Dai, Jun & Wang, Bowen & Gao, Mingyuan, 2021. "Rail corrugation inspection by a self-contained triple-repellent electromagnetic energy harvesting system," Applied Energy, Elsevier, vol. 286(C).
    3. Fan, Kangqi & Liu, Shaohua & Liu, Haiyan & Zhu, Yingmin & Wang, Weidong & Zhang, Daxing, 2018. "Scavenging energy from ultra-low frequency mechanical excitations through a bi-directional hybrid energy harvester," Applied Energy, Elsevier, vol. 216(C), pages 8-20.
    4. Lafarge, Barbara & Grondel, Sébastien & Delebarre, Christophe & Curea, Octavian & Richard, Claude, 2021. "Linear electromagnetic energy harvester system embedded on a vehicle suspension: From modeling to performance analysis," Energy, Elsevier, vol. 225(C).
    5. Shi, Ge & Zeng, Wentao & Xia, Yinshui & Xu, Jubing & Jia, Shengyao & Li, Qing & Wang, Xiudeng & Xia, Huakang & Ye, Yidie, 2023. "A floating piezoelectric electromagnetic hybrid wave vibration energy harvester actuated by a rotating wobble ball," Energy, Elsevier, vol. 270(C).
    6. Miao, Gang & Fang, Shitong & Wang, Suo & Zhou, Shengxi, 2022. "A low-frequency rotational electromagnetic energy harvester using a magnetic plucking mechanism," Applied Energy, Elsevier, vol. 305(C).
    7. Imbaquingo, Carlos & Bahl, Christian & Insinga, Andrea R. & Bjørk, Rasmus, 2022. "A two-dimensional electromagnetic vibration energy harvester with variable stiffness," Applied Energy, Elsevier, vol. 325(C).
    8. Wang, Liguo & Isberg, Jan & Tedeschi, Elisabetta, 2018. "Review of control strategies for wave energy conversion systems and their validation: the wave-to-wire approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 366-379.
    9. Carneiro, Pedro & Soares dos Santos, Marco P. & Rodrigues, André & Ferreira, Jorge A.F. & Simões, José A.O. & Marques, A. Torres & Kholkin, Andrei L., 2020. "Electromagnetic energy harvesting using magnetic levitation architectures: A review," Applied Energy, Elsevier, vol. 260(C).
    10. Yildirim, Tanju & Ghayesh, Mergen H. & Li, Weihua & Alici, Gursel, 2017. "A review on performance enhancement techniques for ambient vibration energy harvesters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 435-449.
    11. Vidal, João V. & Rolo, Pedro & Carneiro, Pedro M.R. & Peres, Inês & Kholkin, Andrei L. & Soares dos Santos, Marco P., 2022. "Automated electromagnetic generator with self-adaptive structure by coil switching," Applied Energy, Elsevier, vol. 325(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Tingsheng & Wu, Xiaoping & Pan, Yajia & Luo, Dabing & Xu, Yongsheng & Zhang, Zutao & Yuan, Yanping & Yan, Jinyue, 2022. "Vibration energy harvesting system based on track energy-recycling technology for heavy-duty freight railroads," Applied Energy, Elsevier, vol. 323(C).
    2. Wang, Wei & Zhang, Ying & Wei, Zon-Han & Cao, Junyi, 2022. "Design and numerical investigation of an ultra-wide bandwidth rolling magnet bistable electromagnetic harvester," Energy, Elsevier, vol. 261(PB).
    3. Zhou, Xu & Wang, Kangda & Li, Siyu & Wang, Yadong & Sun, Daoyu & Wang, Longlong & He, Zhizhu & Tang, Wei & Liu, Huicong & Jin, Xiaoping & Li, Zhen, 2024. "An ultra-compact lightweight electromagnetic generator enhanced with Halbach magnet array and printed triphase windings," Applied Energy, Elsevier, vol. 353(PA).
    4. Shan, Xiaobiao & Tian, Haigang & Chen, Danpeng & Xie, Tao, 2019. "A curved panel energy harvester for aeroelastic vibration," Applied Energy, Elsevier, vol. 249(C), pages 58-66.
    5. Sani, Godwin & Balaram, Bipin & Kudra, Grzegorz & Awrejcewicz, Jan, 2024. "Energy harvesting from friction-induced vibrations in vehicle braking systems in the presence of rotary unbalances," Energy, Elsevier, vol. 289(C).
    6. Han, Minglei & Yang, Xu & Wang, Dong F. & Jiang, Lei & Song, Wei & Ono, Takahito, 2022. "A mosquito-inspired self-adaptive energy harvester for multi-directional vibrations," Applied Energy, Elsevier, vol. 315(C).
    7. Wang, Zhen & Fan, Kangqi & Zhao, Shizhong & Wu, Shuxin & Zhang, Xuan & Zhai, Kangjia & Li, Zhiqi & He, Hua, 2024. "Archery-inspired catapult mechanism with controllable energy release for efficient ultralow-frequency energy harvesting," Applied Energy, Elsevier, vol. 356(C).
    8. Castellano-Aldave, Carlos & Carlosena, Alfonso & Iriarte, Xabier & Plaza, Aitor, 2023. "Ultra-low frequency multidirectional harvester for wind turbines," Applied Energy, Elsevier, vol. 334(C).
    9. Li, Jianwei & Wang, Guotai & Yang, Panpan & Wen, Yongshuang & Zhang, Leian & Song, Rujun & Hou, Chengwei, 2024. "An orientation-adaptive electromagnetic energy harvester scavenging for wind-induced vibration," Energy, Elsevier, vol. 286(C).
    10. Tian, Haigang & Shan, Xiaobiao & Li, Xia & Wang, Junlei, 2023. "Enhanced airfoil-based flutter piezoelectric energy harvester via coupling magnetic force," Applied Energy, Elsevier, vol. 340(C).
    11. Wang, LiGuo & Li, Hui & Lin, Jing & Yan, Xun & Lu, GuanYu & Wu, ShiXuan & Peng, WeiZhi, 2024. "Vibration energy harvesting from an unmanned surface vehicle: Concept design, open sea tests and harvester optimization," Renewable Energy, Elsevier, vol. 222(C).
    12. Zhou, Jianwen & He, Lipeng & Yu, Gang & Liu, Lei & Gu, Xiangfeng & Wang, Yuecheng & Cheng, Guangming, 2022. "Research on cam frequency-increasing hybrid piezoelectric electromagnetic energy harvester with center symmetric structure," Renewable Energy, Elsevier, vol. 185(C), pages 959-969.
    13. Shi, Ge & Tong, Dike & Xia, Yinshui & Jia, Shengyao & Chang, Jian & Li, Qing & Wang, Xiudeng & Xia, Huakang & Ye, Yidie, 2022. "A piezoelectric vibration energy harvester for multi-directional and ultra-low frequency waves with magnetic coupling driven by rotating balls," Applied Energy, Elsevier, vol. 310(C).
    14. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    15. Li, Hui & Wang, LiGuo, 2023. "Numerical study on self-power supply of large marine monitoring buoys: Wave-excited vibration energy harvesting and harvester optimization," Energy, Elsevier, vol. 285(C).
    16. Chen, Lin & Liao, Xin & Sun, Beibei & Zhang, Ning & Wu, Jianwei, 2022. "A numerical-experimental dynamic analysis of high-efficiency and broadband bistable energy harvester with self-decreasing potential barrier effect," Applied Energy, Elsevier, vol. 317(C).
    17. Rashid Naseer & Huliang Dai & Abdessattar Abdelkefi & Lin Wang, 2019. "Comparative Study of Piezoelectric Vortex-Induced Vibration-Based Energy Harvesters with Multi-Stability Characteristics," Energies, MDPI, vol. 13(1), pages 1-24, December.
    18. He, Lipeng & Liu, Lei & Zhou, Jianwen & Yu, Gang & Sun, Baoyu & Cheng, Guangming, 2022. "Design and analysis of a double-acting nonlinear wideband piezoelectric energy harvester under plucking and collision," Energy, Elsevier, vol. 239(PD).
    19. Dong, Liwei & Zuo, Jianyong & Wang, Tianpeng & Xue, Wenbin & Wang, Ping & Li, Jun & Yang, Fan, 2022. "Enhanced piezoelectric harvester for track vibration based on tunable broadband resonant methodology," Energy, Elsevier, vol. 254(PA).
    20. Zhenbang Cao & Haotong Ma & Xuegang Yu & Jianliang Shi & Hu Yang & Yi Tan & Ge Ren, 2022. "Global Dynamics of a Vibro-Impact Energy Harvester," Mathematics, MDPI, vol. 10(3), pages 1-12, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923017518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.