Optimized design and characterization of motor-pump unit for energy-regenerative shock absorbers
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2017.10.100
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhang, Zutao & Zhang, Xingtian & Chen, Weiwu & Rasim, Yagubov & Salman, Waleed & Pan, Hongye & Yuan, Yanping & Wang, Chunbai, 2016. "A high-efficiency energy regenerative shock absorber using supercapacitors for renewable energy applications in range extended electric vehicle," Applied Energy, Elsevier, vol. 178(C), pages 177-188.
- Zhang, Yuxin & Chen, Hong & Guo, Konghui & Zhang, Xinjie & Eben Li, Shengbo, 2017. "Electro-hydraulic damper for energy harvesting suspension: Modeling, prototyping and experimental validation," Applied Energy, Elsevier, vol. 199(C), pages 1-12.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Diogo Correia & Adelino Ferreira, 2021. "Energy Harvesting on Airport Pavements: State-of-the-Art," Sustainability, MDPI, vol. 13(11), pages 1-20, May.
- Abdelkareem, Mohamed A.A. & Xu, Lin & Ali, Mohamed Kamal Ahmed & Elagouz, Ahmed & Mi, Jia & Guo, Sijing & Liu, Yilun & Zuo, Lei, 2018. "Vibration energy harvesting in automotive suspension system: A detailed review," Applied Energy, Elsevier, vol. 229(C), pages 672-699.
- Zhang, Ran & Wang, Xu & Al Shami, Elie & John, Sabu & Zuo, Lei & Wang, Chun H., 2018. "A novel indirect-drive regenerative shock absorber for energy harvesting and comparison with a conventional direct-drive regenerative shock absorber," Applied Energy, Elsevier, vol. 229(C), pages 111-127.
- Abdelkareem, Mohamed A.A. & Xu, Lin & Ali, Mohamed Kamal Ahmed & El-Daly, Abdel-Rahman B.M. & Hassan, Mohamed A. & Elagouz, Ahmed & Bo, Yang, 2019. "Analysis of the prospective vibrational energy harvesting of heavy-duty truck suspensions: A simulation approach," Energy, Elsevier, vol. 173(C), pages 332-351.
- Puliti, Marco & Galluzzi, Renato & Tessari, Federico & Amati, Nicola & Tonoli, Andrea, 2024. "Energy efficient design of regenerative shock absorbers for automotive suspensions: A multi-objective optimization framework," Applied Energy, Elsevier, vol. 358(C).
- Umid Jamolov & Francesco Peccini & Giovanni Maizza, 2022. "Multiphysics Design of an Automotive Regenerative Eddy Current Damper," Energies, MDPI, vol. 15(14), pages 1-18, July.
- El Bakkari, Fatima & Mounir, Hamid, 2024. "Compatible alternative energy storage systems for electric vehicles: Review of relevant technology derived from conventional systems," Energy, Elsevier, vol. 288(C).
- Sathishkumar, P. & Wang, Ruochen & Yang, Lin & Thiyagarajan, J., 2021. "Energy harvesting approach to utilize the dissipated energy during hydraulic active suspension operation with comfort oriented control scheme," Energy, Elsevier, vol. 224(C).
- Long, Guimin & Ding, Fei & Zhang, Nong & Zhang, Jie & Qin, An, 2020. "Regenerative active suspension system with residual energy for in-wheel motor driven electric vehicle," Applied Energy, Elsevier, vol. 260(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lafarge, Barbara & Grondel, Sébastien & Delebarre, Christophe & Curea, Octavian & Richard, Claude, 2021. "Linear electromagnetic energy harvester system embedded on a vehicle suspension: From modeling to performance analysis," Energy, Elsevier, vol. 225(C).
- Abdelkareem, Mohamed A.A. & Xu, Lin & Ali, Mohamed Kamal Ahmed & El-Daly, Abdel-Rahman B.M. & Hassan, Mohamed A. & Elagouz, Ahmed & Bo, Yang, 2019. "Analysis of the prospective vibrational energy harvesting of heavy-duty truck suspensions: A simulation approach," Energy, Elsevier, vol. 173(C), pages 332-351.
- Li, Hai & Zheng, Peng & Zhang, Tingsheng & Zou, Yingquan & Pan, Yajia & Zhang, Zutao & Azam, Ali, 2021. "A high-efficiency energy regenerative shock absorber for powering auxiliary devices of new energy driverless buses," Applied Energy, Elsevier, vol. 295(C).
- Lincoln Bowen & Jordi Vinolas & José Luis Olazagoitia, 2019. "Design and Potential Power Recovery of Two Types of Energy Harvesting Shock Absorbers," Energies, MDPI, vol. 12(24), pages 1-19, December.
- Li, Shiying & Xu, Jun & Gao, Haonan & Tao, Tao & Mei, Xuesong, 2020. "Safety probability based multi-objective optimization of energy-harvesting suspension system," Energy, Elsevier, vol. 209(C).
- Xueying Lv & Yanju Ji & Huanyu Zhao & Jiabao Zhang & Guanyu Zhang & Liu Zhang, 2020. "Research Review of a Vehicle Energy-Regenerative Suspension System," Energies, MDPI, vol. 13(2), pages 1-14, January.
- Zhou, Ran & Yan, Mingyin & Sun, Feng & Jin, Junjie & Li, Qiang & Xu, Fangchao & Zhang, Ming & Zhang, Xiaoyou & Nakano, Kimihiko, 2022. "Experimental validations of a magnetic energy-harvesting suspension and its potential application for self-powered sensing," Energy, Elsevier, vol. 239(PC).
- Abdelkareem, Mohamed A.A. & Xu, Lin & Ali, Mohamed Kamal Ahmed & Elagouz, Ahmed & Mi, Jia & Guo, Sijing & Liu, Yilun & Zuo, Lei, 2018. "Vibration energy harvesting in automotive suspension system: A detailed review," Applied Energy, Elsevier, vol. 229(C), pages 672-699.
- Li, Shiying & Xu, Jun & Pu, Xiaohui & Tao, Tao & Gao, Haonan & Mei, Xuesong, 2019. "Energy-harvesting variable/constant damping suspension system with motor based electromagnetic damper," Energy, Elsevier, vol. 189(C).
- Long, Guimin & Ding, Fei & Zhang, Nong & Zhang, Jie & Qin, An, 2020. "Regenerative active suspension system with residual energy for in-wheel motor driven electric vehicle," Applied Energy, Elsevier, vol. 260(C).
- Puliti, Marco & Galluzzi, Renato & Tessari, Federico & Amati, Nicola & Tonoli, Andrea, 2024. "Energy efficient design of regenerative shock absorbers for automotive suspensions: A multi-objective optimization framework," Applied Energy, Elsevier, vol. 358(C).
- Carlos Gijón-Rivera & José Luis Olazagoitia, 2020. "Methodology for Comprehensive Comparison of Energy Harvesting Shock Absorber Systems," Energies, MDPI, vol. 13(22), pages 1-25, November.
- Zhang, Tingsheng & Kong, Lingji & Zhu, Zhongyin & Wu, Xiaoping & Li, Hai & Zhang, Zutao & Yan, Jinyue, 2024. "An electromagnetic vibration energy harvesting system based on series coupling input mechanism for freight railroads," Applied Energy, Elsevier, vol. 353(PA).
- Wang, Guohui & Yang, Yanan & Wang, Shuxin & Zhang, Hongwei & Wang, Yanhui, 2019. "Efficiency analysis and experimental validation of the ocean thermal energy conversion with phase change material for underwater vehicle," Applied Energy, Elsevier, vol. 248(C), pages 475-488.
- Haris, Muhammad & Hasan, Muhammad Noman & Qin, Shiyin, 2021. "Early and robust remaining useful life prediction of supercapacitors using BOHB optimized Deep Belief Network," Applied Energy, Elsevier, vol. 286(C).
- Jacek Caban & Jan Vrabel & Dorota Górnicka & Radosław Nowak & Maciej Jankiewicz & Jonas Matijošius & Marek Palka, 2023. "Overview of Energy Harvesting Technologies Used in Road Vehicles," Energies, MDPI, vol. 16(9), pages 1-32, April.
- Saleh Alhumaid & Daniel Hess & Rasim Guldiken, 2022. "A Noncontact Magneto–Piezo Harvester-Based Vehicle Regenerative Suspension System: An Experimental Study," Energies, MDPI, vol. 15(12), pages 1-17, June.
- Jinkyu Lee & Yondo Chun & Jiwon Kim & Byounggun Park, 2021. "An Energy-Harvesting System Using MPPT at Shock Absorber for Electric Vehicles," Energies, MDPI, vol. 14(9), pages 1-14, April.
- Gao, Zepeng & Chen, Sizhong & Zhao, Yuzhuang & Liu, Zheng, 2019. "Numerical evaluation of compatibility between comfort and energy recovery based on energy flow mechanism inside electromagnetic active suspension," Energy, Elsevier, vol. 170(C), pages 521-536.
- Azam, Ali & Ahmed, Ammar & Kamran, Muhammad Sajid & Hai, Li & Zhang, Zutao & Ali, Asif, 2021. "Knowledge structuring for enhancing mechanical energy harvesting (MEH): An in-depth review from 2000 to 2020 using CiteSpace," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
More about this item
Keywords
Regenerative; Automotive; Shock absorber; Electrohydrostatic actuation; Energy harvesting; Efficiency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:210:y:2018:i:c:p:16-27. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.