IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v224y2021ics0360544221004217.html
   My bibliography  Save this article

The real-time pricing optimization model of smart grid based on the utility function of the logistic function

Author

Listed:
  • Li, Yuanyuan
  • Li, Junxiang
  • He, Jianjia
  • Zhang, Shuyuan

Abstract

The utility function is very significant for solving the real-time pricing problem of smart grid. Based on the Logistic function, a new utility function is constructed to satisfy four properties of the utility function. In addition, from the perspective of social welfare, the real-time pricing optimization model of smart grid is established. By using the KKT conditions and the improved Fischer-Burmerister smoothing function, the optimization model is transformed into a smoothing equations problem and the smoothing Newton algorithm is used to obtain the optimal solution of the problem. The nonsingularity of the Jacobian matrix and the global convergence of the algorithm are proved. The simulation results show that, compared with previous quadratic and logarithmic utility functions, the new utility function can not only reduce the user’s electricity consumption and the supplier’s cost can but also improve the user’s utility and the total social welfare, which also indicates that the new utility function is effective in establishing the real-time pricing model of smart grid. Furthermore, the iteration times of several algorithms to solve the real-time pricing problem of smart grid are compared, which showed that the convergence rate of the smoothing Newton algorithm is very fast.

Suggested Citation

  • Li, Yuanyuan & Li, Junxiang & He, Jianjia & Zhang, Shuyuan, 2021. "The real-time pricing optimization model of smart grid based on the utility function of the logistic function," Energy, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:energy:v:224:y:2021:i:c:s0360544221004217
    DOI: 10.1016/j.energy.2021.120172
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221004217
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120172?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deng, Tingting & Yan, Wenzhou & Nojavan, Sayyad & Jermsittiparsert, Kittisak, 2020. "Risk evaluation and retail electricity pricing using downside risk constraints method," Energy, Elsevier, vol. 192(C).
    2. Monfared, Houman Jamshidi & Ghasemi, Ahmad & Loni, Abdolah & Marzband, Mousa, 2019. "A hybrid price-based demand response program for the residential micro-grid," Energy, Elsevier, vol. 185(C), pages 274-285.
    3. Hong, Seung Ho & Yu, Mengmeng & Huang, Xuefei, 2015. "A real-time demand response algorithm for heterogeneous devices in buildings and homes," Energy, Elsevier, vol. 80(C), pages 123-132.
    4. Alipour, Manijeh & Zare, Kazem & Seyedi, Heresh & Jalali, Mehdi, 2019. "Real-time price-based demand response model for combined heat and power systems," Energy, Elsevier, vol. 168(C), pages 1119-1127.
    5. Nojavan, Sayyad & Zare, Kazem & Mohammadi-Ivatloo, Behnam, 2017. "Robust bidding and offering strategies of electricity retailer under multi-tariff pricing," Energy Economics, Elsevier, vol. 68(C), pages 359-372.
    6. Muhammad Awais & Nadeem Javaid & Khursheed Aurangzeb & Syed Irtaza Haider & Zahoor Ali Khan & Danish Mahmood, 2018. "Towards Effective and Efficient Energy Management of Single Home and a Smart Community Exploiting Heuristic Optimization Algorithms with Critical Peak and Real-Time Pricing Tariffs in Smart Grids," Energies, MDPI, vol. 11(11), pages 1-30, November.
    7. Yanzhe (Murray) Lei & Stefanus Jasin, 2020. "Real-Time Dynamic Pricing for Revenue Management with Reusable Resources, Advance Reservation, and Deterministic Service Time Requirements," Operations Research, INFORMS, vol. 68(3), pages 676-685, May.
    8. Severin Borenstein, 2005. "The Long-Run Efficiency of Real-Time Electricity Pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 93-116.
    9. Yang, Yandong & Hong, Weijun & Li, Shufang, 2019. "Deep ensemble learning based probabilistic load forecasting in smart grids," Energy, Elsevier, vol. 189(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Jin & Dong, Jun & Liu, Dongran & Zhang, Yaoyu & Ma, Tongtao, 2022. "From peak shedding to low-carbon transitions: Customer psychological factors in demand response," Energy, Elsevier, vol. 238(PA).
    2. Xu, Bo & Wang, Jiexin & Guo, Mengyuan & Lu, Jiayu & Li, Gehui & Han, Liang, 2021. "A hybrid demand response mechanism based on real-time incentive and real-time pricing," Energy, Elsevier, vol. 231(C).
    3. Yuan, Guanxiu & Gao, Yan & Ye, Bei, 2021. "Optimal dispatching strategy and real-time pricing for multi-regional integrated energy systems based on demand response," Renewable Energy, Elsevier, vol. 179(C), pages 1424-1446.
    4. Lee, Hyun-Suk, 2024. "Automated tariff design for energy supply–demand matching based on Bayesian optimization: Technical framework and policy implications," Energy Policy, Elsevier, vol. 188(C).
    5. Qu, Deqiang & Li, Junxiang & Ma, Xiaojia, 2024. "Distributed real-time pricing of smart grid considering individual differences," Omega, Elsevier, vol. 127(C).
    6. Li, Ningning & Gao, Yan, 2023. "Real-time pricing based on convex hull method for smart grid with multiple generating units," Energy, Elsevier, vol. 285(C).
    7. Zhang, Li & Gao, Yan & Zhu, Hongbo & Tao, Li, 2022. "Bi-level stochastic real-time pricing model in multi-energy generation system: A reinforcement learning approach," Energy, Elsevier, vol. 239(PA).
    8. Costa, Vinicius B.F. & Bonatto, Benedito D. & Silva, Patrícia F., 2022. "Optimizing Brazil's regulated electricity market in the context of time-of-use rates and prosumers with energy storage systems," Utilities Policy, Elsevier, vol. 79(C).
    9. Emad M. Ahmed & Rajarajeswari Rathinam & Suchitra Dayalan & George S. Fernandez & Ziad M. Ali & Shady H. E. Abdel Aleem & Ahmed I. Omar, 2021. "A Comprehensive Analysis of Demand Response Pricing Strategies in a Smart Grid Environment Using Particle Swarm Optimization and the Strawberry Optimization Algorithm," Mathematics, MDPI, vol. 9(18), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pretto, Madeline, 2021. "Tail-risk Comprehension and Protection in Real-time Electricity Pricing : Experimental Evidence," Warwick-Monash Economics Student Papers 25, Warwick Monash Economics Student Papers.
    2. Russo, Marianna & Kraft, Emil & Bertsch, Valentin & Keles, Dogan, 2022. "Short-term risk management of electricity retailers under rising shares of decentralized solar generation," Energy Economics, Elsevier, vol. 109(C).
    3. Xu, Bo & Wang, Jiexin & Guo, Mengyuan & Lu, Jiayu & Li, Gehui & Han, Liang, 2021. "A hybrid demand response mechanism based on real-time incentive and real-time pricing," Energy, Elsevier, vol. 231(C).
    4. Shen, Ziqi & Wei, Wei & Wu, Lei & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Economic dispatch of power systems with LMP-dependent demands: A non-iterative MILP model," Energy, Elsevier, vol. 233(C).
    5. Adlband, Nahid & Biguesh, Mehrzad & Mohammadi, Mohammad, 2020. "A privacy-preserving and aggregate load controlling decentralized energy consumption scheduling scheme," Energy, Elsevier, vol. 198(C).
    6. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    7. Jichun Liu & Yangfang Yang & Yue Xiang & Junyong Liu, 2019. "A Power Exchange Strategy for Multiple Areas with Hydro Power and Flexible Loads," Energies, MDPI, vol. 12(6), pages 1-17, March.
    8. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    9. Taimoor Ahmad Khan & Amjad Ullah & Ghulam Hafeez & Imran Khan & Sadia Murawwat & Faheem Ali & Sajjad Ali & Sheraz Khan & Khalid Rehman, 2022. "A Fractional Order Super Twisting Sliding Mode Controller for Energy Management in Smart Microgrid Using Dynamic Pricing Approach," Energies, MDPI, vol. 15(23), pages 1-14, November.
    10. Meyabadi, A. Fattahi & Deihimi, M.H., 2017. "A review of demand-side management: Reconsidering theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 367-379.
    11. Mattias Vesterberg and Chandra Kiran B. Krishnamurthy, 2016. "Residential End-use Electricity Demand: Implications for Real Time Pricing in Sweden," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    12. Ahmed S. Alahmed & Lang Tong, 2022. "Integrating Distributed Energy Resources: Optimal Prosumer Decisions and Impacts of Net Metering Tariffs," Papers 2204.06115, arXiv.org, revised May 2022.
    13. Graff Zivin, Joshua S. & Kotchen, Matthew J. & Mansur, Erin T., 2014. "Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 248-268.
    14. De Jonghe, C. & Hobbs, B. F. & Belmans, R., 2011. "Integrating short-term demand response into long-term investment planning," Cambridge Working Papers in Economics 1132, Faculty of Economics, University of Cambridge.
    15. Nolan Ritter & Julia Anna Bingler, 2021. "Do homo sapiens know their prices? Insights on dysfunctional price mechanisms from a large field experiment," CER-ETH Economics working paper series 21/348, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    16. Elma, Onur & Selamogullari, Ugur Savas, 2015. "A new home energy management algorithm with voltage control in a smart home environment," Energy, Elsevier, vol. 91(C), pages 720-731.
    17. Vesterberg, Mattias, 2016. "The hourly income elasticity of electricity," Energy Economics, Elsevier, vol. 59(C), pages 188-197.
    18. Vesterberg, Mattias, 2017. "Power to the people: Electricity demand and household behavior," Umeå Economic Studies 942, Umeå University, Department of Economics.
    19. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    20. Kirkerud, Jon Gustav & Trømborg, Erik & Bolkesjø, Torjus Folsland, 2016. "Impacts of electricity grid tariffs on flexible use of electricity to heat generation," Energy, Elsevier, vol. 115(P3), pages 1679-1687.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:224:y:2021:i:c:s0360544221004217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.