IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v235y2024ics0960148124014289.html
   My bibliography  Save this article

Optimal economic configuration by sharing hydrogen storage while considering distributed demand response in hydrogen-based renewable microgrid

Author

Listed:
  • Li, Yonggang
  • Zhang, Yuanjin
  • Su, Yaotong
  • Wu, Weinong
  • Xia, Lei

Abstract

With the issues of the greenhouse effect and environmental pollution globally, a high proportion of renewable energy has been integrated into microgrids. Its interconnection brings many challenges to the electric power industry. This paper proposes a new distributed response strategy through sharing hydrogen storage resources, aiming to solve the supply-demand imbalance in microgrids. First, the uneven power distribution from shared energy storage stations necessitates ensuring a fair power dispatch among users. Next, a microgrid demand response model with multi-constraint conditions and high penetration of wind and solar power is established, incorporating constraints like user power consumption, energy storage capacity, and charging/discharging power while considering differences in user electricity behaviors. Finally, the optimal economic configuration uses Lagrange duality theory to process the integrated models, including the demand response, hydrogen sharing, and power generation models, to make the optimization goals fairer. Results demonstrate that our strategy can adjust user electricity usage according to real-time supply-demand conditions, reducing users' total costs by 39.4 %. Compared with the existing configurations of sharing hydrogen storage configurations, our model uses more accurate utility functions, demonstrating better economic advantages, with users' total costs reduced by 4.89 % and revenue of the shared storage station increased by 4.02 %.

Suggested Citation

  • Li, Yonggang & Zhang, Yuanjin & Su, Yaotong & Wu, Weinong & Xia, Lei, 2024. "Optimal economic configuration by sharing hydrogen storage while considering distributed demand response in hydrogen-based renewable microgrid," Renewable Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124014289
    DOI: 10.1016/j.renene.2024.121360
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124014289
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121360?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rawat, Tanuj & Niazi, K.R. & Gupta, Nikhil & Sharma, Sachin, 2022. "A linearized multi-objective Bi-level approach for operation of smart distribution systems encompassing demand response," Energy, Elsevier, vol. 238(PC).
    2. Li, Yuanyuan & Li, Junxiang & He, Jianjia & Zhang, Shuyuan, 2021. "The real-time pricing optimization model of smart grid based on the utility function of the logistic function," Energy, Elsevier, vol. 224(C).
    3. Wang, Xuejie & Li, Bingkang & Wang, Yuwei & Lu, Hao & Zhao, Huiru & Xue, Wanlei, 2022. "A bargaining game-based profit allocation method for the wind-hydrogen-storage combined system," Applied Energy, Elsevier, vol. 310(C).
    4. Zhang, Pan & Mansouri, Seyed Amir & Rezaee Jordehi, Ahmad & Tostado-Véliz, Marcos & Alharthi, Yahya Z. & Safaraliev, Murodbek, 2024. "An ADMM-enabled robust optimization framework for self-healing scheduling of smart grids integrated with smart prosumers," Applied Energy, Elsevier, vol. 363(C).
    5. Mansouri, Seyed Amir & Nematbakhsh, Emad & Jordehi, Ahmad Rezaee & Marzband, Mousa & Tostado-Véliz, Marcos & Jurado, Francisco, 2023. "An interval-based nested optimization framework for deriving flexibility from smart buildings and electric vehicle fleets in the TSO-DSO coordination," Applied Energy, Elsevier, vol. 341(C).
    6. Yu Min Hwang & Issac Sim & Young Ghyu Sun & Heung-Jae Lee & Jin Young Kim, 2018. "Game-Theory Modeling for Social Welfare Maximization in Smart Grids," Energies, MDPI, vol. 11(9), pages 1-23, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jinglong & Zheng, Yingying, 2024. "Data-driven seasonal scenario generation-based static operation of hybrid energy systems," Energy, Elsevier, vol. 309(C).
    2. Faezeh Akhavizadegan & Lizhi Wang & James McCalley, 2020. "Scenario Selection for Iterative Stochastic Transmission Expansion Planning," Energies, MDPI, vol. 13(5), pages 1-18, March.
    3. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    4. Tengfei Ma & Junyong Wu & Liangliang Hao & Huaguang Yan & Dezhi Li, 2018. "A Real-Time Pricing Scheme for Energy Management in Integrated Energy Systems: A Stackelberg Game Approach," Energies, MDPI, vol. 11(10), pages 1-19, October.
    5. Xu, Jiazhu & Yi, Yuqin, 2023. "Multi-microgrid low-carbon economy operation strategy considering both source and load uncertainty: A Nash bargaining approach," Energy, Elsevier, vol. 263(PB).
    6. Bardeeniz, Santi & Panjapornpon, Chanin & Fongsamut, Chalermpan & Ngaotrakanwiwat, Pailin & Hussain, Mohamed Azlan, 2024. "Energy efficiency characteristics analysis for process diagnosis under anomaly using self-adaptive-based SHAP guided optimization," Energy, Elsevier, vol. 309(C).
    7. An, Yimeng & Dang, Yaoguo & Wang, Junjie & Zhou, Huimin & Mai, Son T., 2024. "Mixed-frequency data Sampling Grey system Model: Forecasting annual CO2 emissions in China with quarterly and monthly economic-energy indicators," Applied Energy, Elsevier, vol. 370(C).
    8. Ebrahimi, Mahoor & Ebrahimi, Mahan & Shafie-khah, Miadreza & Laaksonen, Hannu, 2024. "EV-observing distribution system management considering strategic VPPs and active & reactive power markets," Applied Energy, Elsevier, vol. 364(C).
    9. Han, Jian & Tan, Qinliang & Ding, Yihong & Liu, Yuan, 2024. "Exploring the diffusion of low-carbon power generation and energy storage technologies under electricity market reform in China: An agent-based modeling framework for power sector," Energy, Elsevier, vol. 308(C).
    10. Cheng, Haoran & Xia, Yanghong & Hu, Zhiyuan & Wei, Wei, 2024. "Optimum pulse electrolysis for efficiency enhancement of hydrogen production by alkaline water electrolyzers," Applied Energy, Elsevier, vol. 358(C).
    11. Bogdan-Constantin Neagu & Ovidiu Ivanov & Gheorghe Grigoras & Mihai Gavrilas & Dumitru-Marcel Istrate, 2020. "New Market Model with Social and Commercial Tiers for Improved Prosumer Trading in Microgrids," Sustainability, MDPI, vol. 12(18), pages 1-43, September.
    12. Elsir, Mohamed & Al-Sumaiti, Ameena Saad & El Moursi, Mohamed Shawky & Al-Awami, Ali Taleb, 2023. "Coordinating the day-ahead operation scheduling for demand response and water desalination plants in smart grid," Applied Energy, Elsevier, vol. 335(C).
    13. Li, Ningning & Gao, Yan, 2023. "Real-time pricing based on convex hull method for smart grid with multiple generating units," Energy, Elsevier, vol. 285(C).
    14. Lei, Xiang & Yu, Hang & Shao, Ziyun & Jian, Linni, 2023. "Optimal bidding and coordinating strategy for maximal marginal revenue due to V2G operation: Distribution system operator as a key player in China's uncertain electricity markets," Energy, Elsevier, vol. 283(C).
    15. Sara Haghifam & Kazem Zare & Mehdi Abapour & Gregorio Muñoz-Delgado & Javier Contreras, 2020. "A Stackelberg Game-Based Approach for Transactive Energy Management in Smart Distribution Networks," Energies, MDPI, vol. 13(14), pages 1-34, July.
    16. Zhou, Yuekuan & Liu, Xiaohua & Zhao, Qianchuan, 2024. "A stochastic vehicle schedule model for demand response and grid flexibility in a renewable-building-e-transportation-microgrid," Renewable Energy, Elsevier, vol. 221(C).
    17. Chen, Yuanyi & Zheng, Yanchong & Hu, Simon & Xie, Shiwei & Yang, Qiang, 2024. "Risk-averse energy dispatch for hybrid energy refueling stations considering Boundedly rational mixed user equilibrium and operational uncertainties," Applied Energy, Elsevier, vol. 376(PA).
    18. Changcheng Li & Haoran Li & Hao Yue & Jinfeng Lv & Jian Zhang, 2024. "Flexibility Value of Multimodal Hydrogen Energy Utilization in Electric–Hydrogen–Thermal Systems," Sustainability, MDPI, vol. 16(12), pages 1-25, June.
    19. Wang, Yuwei & Song, Minghao & Jia, Mengyao & Shi, Lin & Li, Bingkang, 2023. "TimeGAN based distributionally robust optimization for biomass-photovoltaic-hydrogen scheduling under source-load-market uncertainties," Energy, Elsevier, vol. 284(C).
    20. Lee, Hyun-Suk, 2024. "Automated tariff design for energy supply–demand matching based on Bayesian optimization: Technical framework and policy implications," Energy Policy, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124014289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.