IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipas0360544221019150.html
   My bibliography  Save this article

From peak shedding to low-carbon transitions: Customer psychological factors in demand response

Author

Listed:
  • Lin, Jin
  • Dong, Jun
  • Liu, Dongran
  • Zhang, Yaoyu
  • Ma, Tongtao

Abstract

Incentive-based demand response (IBDR) programs have played an essential role in energy efficiency delivery, especially peak shedding. Recently, utilities have been challenged to consider the implications of low-carbon transitions and the wider benefits of IBDR. What's more, to fully activate demand-side resources, the IBDR scheme's design requires broadening the analysis beyond the traditional disciplines of economic entities and incorporating new psychological cues of customers. In this regard, this paper studies system operator (SO)'s carbon emissions abatement and incentive strategies in peaking shedding events when facing pressure from both emissions tax and customer non-economic response. We develop a trilayer economic-environmental-behavioral IBDR model for incentive price setting and investigate how carbon tax and customer psychological factors (CPFs) affect the scheme design. Initially, the interaction among hierarchical market participators is captured by a trilayer Stackelberg game. Then the SO's problem is formulated as multi-objective to minimize the procurement cost and emission. Moreover, CPFs are incorporated into the model by parameterized assumptions following behavioral economics. Results show that without consideration of CPFs will result in deviation in the DR model. With reasonable carbon prices, IBDR can be an effective tool for both energy efficiency improvement and decarbonization.

Suggested Citation

  • Lin, Jin & Dong, Jun & Liu, Dongran & Zhang, Yaoyu & Ma, Tongtao, 2022. "From peak shedding to low-carbon transitions: Customer psychological factors in demand response," Energy, Elsevier, vol. 238(PA).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221019150
    DOI: 10.1016/j.energy.2021.121667
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221019150
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121667?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen, Lulu & Zhou, Kaile & Li, Jun & Wang, Shanyong, 2020. "Modified deep learning and reinforcement learning for an incentive-based demand response model," Energy, Elsevier, vol. 205(C).
    2. Ai, Xian-Neng & Du, Yun-Fei & Li, Wei-Ming & Li, Hui & Liao, Hua, 2021. "The pattern of household energy transition," Energy, Elsevier, vol. 234(C).
    3. Yu, Mengmeng & Hong, Seung Ho, 2017. "Incentive-based demand response considering hierarchical electricity market: A Stackelberg game approach," Applied Energy, Elsevier, vol. 203(C), pages 267-279.
    4. Xu, Bo & Wang, Jiexin & Guo, Mengyuan & Lu, Jiayu & Li, Gehui & Han, Liang, 2021. "A hybrid demand response mechanism based on real-time incentive and real-time pricing," Energy, Elsevier, vol. 231(C).
    5. Shahryari, E. & Shayeghi, H. & Mohammadi-ivatloo, B. & Moradzadeh, M., 2018. "An improved incentive-based demand response program in day-ahead and intra-day electricity markets," Energy, Elsevier, vol. 155(C), pages 205-214.
    6. Yu, Ping, 2020. "Carbon tax/subsidy policy choice and its effects in the presence of interest groups," Energy Policy, Elsevier, vol. 147(C).
    7. Mier, Mathias & Weissbart, Christoph, 2020. "Power markets in transition: Decarbonization, energy efficiency, and short-term demand response," Energy Economics, Elsevier, vol. 86(C).
    8. Zhang, Wenyu & Chen, Qian & Yan, Jianyong & Zhang, Shuai & Xu, Jiyuan, 2021. "A novel asynchronous deep reinforcement learning model with adaptive early forecasting method and reward incentive mechanism for short-term load forecasting," Energy, Elsevier, vol. 236(C).
    9. Balezentis, Tomas & Streimikiene, Dalia & Mikalauskas, Ignas & Shen, Zhiyang, 2021. "Towards carbon free economy and electricity: The puzzle of energy costs, sustainability and security based on willingness to pay," Energy, Elsevier, vol. 214(C).
    10. Wen, Wen & Zhou, P. & Zhang, Fuqiang, 2018. "Carbon emissions abatement: Emissions trading vs consumer awareness," Energy Economics, Elsevier, vol. 76(C), pages 34-47.
    11. Wang, Wei-Zheng & Liu, Lan-Cui & Liao, Hua & Wei, Yi-Ming, 2021. "Impacts of urbanization on carbon emissions: An empirical analysis from OECD countries," Energy Policy, Elsevier, vol. 151(C).
    12. Kahneman, Daniel & Knetsch, Jack L & Thaler, Richard H, 1990. "Experimental Tests of the Endowment Effect and the Coase Theorem," Journal of Political Economy, University of Chicago Press, vol. 98(6), pages 1325-1348, December.
    13. Fotouhi Ghazvini, Mohammad Ali & Faria, Pedro & Ramos, Sergio & Morais, Hugo & Vale, Zita, 2015. "Incentive-based demand response programs designed by asset-light retail electricity providers for the day-ahead market," Energy, Elsevier, vol. 82(C), pages 786-799.
    14. Good, Nicholas, 2019. "Using behavioural economic theory in modelling of demand response," Applied Energy, Elsevier, vol. 239(C), pages 107-116.
    15. Kim, Junghun & Seung, Hyunchan & Lee, Jongsu & Ahn, Joongha, 2020. "Asymmetric preference and loss aversion for electric vehicles: The reference-dependent choice model capturing different preference directions," Energy Economics, Elsevier, vol. 86(C).
    16. Smith, Alexander M. & Brown, Marilyn A., 2015. "Demand response: A carbon-neutral resource?," Energy, Elsevier, vol. 85(C), pages 10-22.
    17. Broberg, Thomas & Daniel, Aemiro Melkamu & Persson, Lars, 2021. "Household preferences for load restrictions: Is there an effect of pro-environmental framing?," Energy Economics, Elsevier, vol. 97(C).
    18. Astriani, Yuli & Shafiullah, GM & Shahnia, Farhad, 2021. "Incentive determination of a demand response program for microgrids," Applied Energy, Elsevier, vol. 292(C).
    19. Lau, E.T. & Yang, Q. & Stokes, L. & Taylor, G.A. & Forbes, A.B. & Clarkson, P. & Wright, P.S. & Livina, V.N., 2015. "Carbon savings in the UK demand side response programmes," Applied Energy, Elsevier, vol. 159(C), pages 478-489.
    20. Wang, Zhaohua & Li, Hao & Deng, Nana & Cheng, Kaiwei & Lu, Bin & Zhang, Bin & Wang, Bo, 2020. "How to effectively implement an incentive-based residential electricity demand response policy? Experience from large-scale trials and matching questionnaires," Energy Policy, Elsevier, vol. 141(C).
    21. Mahapatra, Bamadev & Irfan, Mohd, 2021. "Asymmetric impacts of energy efficiency on carbon emissions: A comparative analysis between developed and developing economies," Energy, Elsevier, vol. 227(C).
    22. Jason F. Shogren & Laura O. Taylor, 2008. "On Behavioral-Environmental Economics," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 2(1), pages 26-44, Winter.
    23. Mi, Lingyun & Xu, Ting & Sun, Yuhuan & Yang, Hang & Wang, Bangjun & Gan, Xiaoli & Qiao, Lijie, 2021. "Promoting differentiated energy savings: Analysis of the psychological motivation of households with different energy consumption levels," Energy, Elsevier, vol. 218(C).
    24. Lee, Junghun & Yoo, Seunghwan & Kim, Jonghun & Song, Doosam & Jeong, Hakgeun, 2018. "Improvements to the customer baseline load (CBL) using standard energy consumption considering energy efficiency and demand response," Energy, Elsevier, vol. 144(C), pages 1052-1063.
    25. Fleschutz, Markus & Bohlayer, Markus & Braun, Marco & Henze, Gregor & Murphy, Michael D., 2021. "The effect of price-based demand response on carbon emissions in European electricity markets: The importance of adequate carbon prices," Applied Energy, Elsevier, vol. 295(C).
    26. Cao, Jing & Dai, Hancheng & Li, Shantong & Guo, Chaoyi & Ho, Mun & Cai, Wenjia & He, Jianwu & Huang, Hai & Li, Jifeng & Liu, Yu & Qian, Haoqi & Wang, Can & Wu, Libo & Zhang, Xiliang, 2021. "The general equilibrium impacts of carbon tax policy in China: A multi-model comparison," Energy Economics, Elsevier, vol. 99(C).
    27. Camara, N'Famory & Xu, Deyi & Binyet, Emmanuel, 2017. "Understanding household energy use, decision making and behaviour in Guinea-Conakry by applying behavioural economics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1380-1391.
    28. Li, Yuanyuan & Li, Junxiang & He, Jianjia & Zhang, Shuyuan, 2021. "The real-time pricing optimization model of smart grid based on the utility function of the logistic function," Energy, Elsevier, vol. 224(C).
    29. Zheng, Shunlin & Sun, Yi & Li, Bin & Qi, Bing & Zhang, Xudong & Li, Fei, 2021. "Incentive-based integrated demand response for multiple energy carriers under complex uncertainties and double coupling effects," Applied Energy, Elsevier, vol. 283(C).
    30. Alasseri, Rajeev & Rao, T. Joji & Sreekanth, K.J., 2020. "Institution of incentive-based demand response programs and prospective policy assessments for a subsidized electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    31. Niklas Höhne & Takeshi Kuramochi & Carsten Warnecke & Frauke Röser & Hanna Fekete & Markus Hagemann & Thomas Day & Ritika Tewari & Marie Kurdziel & Sebastian Sterl & Sofia Gonzales, 2017. "The Paris Agreement: resolving the inconsistency between global goals and national contributions," Climate Policy, Taylor & Francis Journals, vol. 17(1), pages 16-32, January.
    32. Khemakhem, Siwar & Rekik, Mouna & Krichen, Lotfi, 2019. "Double layer home energy supervision strategies based on demand response and plug-in electric vehicle control for flattening power load curves in a smart grid," Energy, Elsevier, vol. 167(C), pages 312-324.
    33. Sirin, Selahattin Murat & Gonul, Mustafa Sinan, 2016. "Behavioral aspects of regulation: A discussion on switching and demand response in Turkish electricity market," Energy Policy, Elsevier, vol. 97(C), pages 591-602.
    34. Xu, Xiaojing & Chen, Chien-fei & Zhu, Xiaojuan & Hu, Qinran, 2018. "Promoting acceptance of direct load control programs in the United States: Financial incentive versus control option," Energy, Elsevier, vol. 147(C), pages 1278-1287.
    35. Parrish, Bryony & Heptonstall, Phil & Gross, Rob & Sovacool, Benjamin K., 2020. "A systematic review of motivations, enablers and barriers for consumer engagement with residential demand response," Energy Policy, Elsevier, vol. 138(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi Huang & Aihua Jiang & Yu Zeng & Jianan Xu, 2022. "Community Flexible Load Dispatching Model Based on Herd Mentality," Energies, MDPI, vol. 15(13), pages 1-18, June.
    2. Sun, Bo & Li, Mingzhe & Wang, Fan & Xie, Jingdong, 2023. "An incentive mechanism to promote residential renewable energy consumption in China's electricity retail market: A two-level Stackelberg game approach," Energy, Elsevier, vol. 269(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Jin & Dong, Jun & Dou, Xihao & Liu, Yao & Yang, Peiwen & Ma, Tongtao, 2022. "Psychological insights for incentive-based demand response incorporating battery energy storage systems: A two-loop Stackelberg game approach," Energy, Elsevier, vol. 239(PC).
    2. Xu, Bo & Wang, Jiexin & Guo, Mengyuan & Lu, Jiayu & Li, Gehui & Han, Liang, 2021. "A hybrid demand response mechanism based on real-time incentive and real-time pricing," Energy, Elsevier, vol. 231(C).
    3. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Kansal, Gaurav & Tiwari, Rajive, 2024. "A PEM-based augmented IBDR framework and its evaluation in contemporary distribution systems," Energy, Elsevier, vol. 296(C).
    5. Ma, Siyu & Liu, Hui & Wang, Ni & Huang, Lidong & Su, Jinshuo & Zhao, Teyang, 2024. "Incentive-based integrated demand response with multi-energy time-varying carbon emission factors," Applied Energy, Elsevier, vol. 359(C).
    6. Navid Rezaei & Abdollah Ahmadi & Mohammadhossein Deihimi, 2022. "A Comprehensive Review of Demand-Side Management Based on Analysis of Productivity: Techniques and Applications," Energies, MDPI, vol. 15(20), pages 1-28, October.
    7. Eduardo J. Salazar & Mauro Jurado & Mauricio E. Samper, 2023. "Reinforcement Learning-Based Pricing and Incentive Strategy for Demand Response in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
    8. Sridhar, Araavind & Honkapuro, Samuli & Ruiz, Fredy & Stoklasa, Jan & Annala, Salla & Wolff, Annika & Rautiainen, Antti, 2023. "Residential consumer preferences to demand response: Analysis of different motivators to enroll in direct load control demand response," Energy Policy, Elsevier, vol. 173(C).
    9. Wen, Lulu & Zhou, Kaile & Li, Jun & Wang, Shanyong, 2020. "Modified deep learning and reinforcement learning for an incentive-based demand response model," Energy, Elsevier, vol. 205(C).
    10. Sridhar, Araavind & Honkapuro, Samuli & Ruiz, Fredy & Stoklasa, Jan & Annala, Salla & Wolff, Annika & Rautiainen, Antti, 2023. "Toward residential flexibility—Consumer willingness to enroll household loads in demand response," Applied Energy, Elsevier, vol. 342(C).
    11. Tao, Peng & Xu, Fei & Dong, Zengbo & Zhang, Chao & Peng, Xuefeng & Zhao, Junpeng & Li, Kangping & Wang, Fei, 2022. "Graph convolutional network-based aggregated demand response baseline load estimation," Energy, Elsevier, vol. 251(C).
    12. Chen, Yongbao & Zhang, Lixin & Xu, Peng & Di Gangi, Alessandra, 2021. "Electricity demand response schemes in China: Pilot study and future outlook," Energy, Elsevier, vol. 224(C).
    13. Hui Wang & Yao Xu, 2024. "Optimized Decision-Making for Multi-Market Green Power Transactions of Electricity Retailers under Demand-Side Response: The Chinese Market Case Study," Energies, MDPI, vol. 17(11), pages 1-16, May.
    14. Dominika Czyz & Karolina Safarzynska, 2023. "Catastrophic Damages and the Optimal Carbon Tax Under Loss Aversion," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(2), pages 303-340, June.
    15. Ioanna-M. Chatzigeorgiou & Christos Diou & Kyriakos C. Chatzidimitriou & Georgios T. Andreou, 2021. "Demand Response Alert Service Based on Appliance Modeling," Energies, MDPI, vol. 14(10), pages 1-15, May.
    16. Wang, Bo & Deng, Nana & Li, Haoxiang & Zhao, Wenhui & Liu, Jie & Wang, Zhaohua, 2021. "Effect and mechanism of monetary incentives and moral suasion on residential peak-hour electricity usage," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    17. Fontecha, John E. & Nikolaev, Alexander & Walteros, Jose L. & Zhu, Zhenduo, 2022. "Scientists wanted? A literature review on incentive programs that promote pro-environmental consumer behavior: Energy, waste, and water," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    18. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).
    19. Wang, Haibing & Zhao, Anjie & Khan, Muhammad Qasim & Sun, Weiqing, 2024. "Optimal operation of energy hub considering reward-punishment ladder carbon trading and electrothermal demand coupling," Energy, Elsevier, vol. 286(C).
    20. Nikolas Schöne & Kathrin Greilmeier & Boris Heinz, 2022. "Survey-Based Assessment of the Preferences in Residential Demand Response on the Island of Mayotte," Energies, MDPI, vol. 15(4), pages 1-30, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221019150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.