IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v376y2024ipbs0306261924016817.html
   My bibliography  Save this article

Capturing opportunity costs of peer-to-peer energy transactions in microgrids via virtual state-of-charge bids

Author

Listed:
  • Xia, Yuanxing
  • Huang, Yu
  • Lin, Tinjun
  • Fang, Jicheng
  • Shi, Linjun
  • Wu, Feng

Abstract

Since the prosumers can absorb or generate power in the P2P energy market, we equivalently model the prosumers as virtual energy storages (VESs) and employ the latest state-of-charge (SOC)-dependent bids to depict the prosumers’ bidding strategies. We first model the P2P market participants’ trading behaviors considering their loads, batteries, and distributed energy resources (DERs). To derive the equivalent VESs, we develop an algorithm to estimate the prosumers’ virtual capacities. We analyze the market operator’s model to guarantee energy delivery in the distribution network. Then, we project the operator’s network constraints to the prosumers’ feasible regions for privacy preservation and iteration reduction. Based on the virtual capacities, we develop VSOCs to depict the prosumers’ different trading states during market operation. We finally convexify the market-clearing problem and modify the alternating direction method of multipliers (ADMM) to calculate the optimal trading results with VSOC-dependent bids. Two cases are employed to verify that the VSOC-dependent bids can accommodate the prosumers’ parameter changes and trading preferences. The opportunity costs are reduced by 41.2% when allowing prosumers to bid differently in various VSOCs.

Suggested Citation

  • Xia, Yuanxing & Huang, Yu & Lin, Tinjun & Fang, Jicheng & Shi, Linjun & Wu, Feng, 2024. "Capturing opportunity costs of peer-to-peer energy transactions in microgrids via virtual state-of-charge bids," Applied Energy, Elsevier, vol. 376(PB).
  • Handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924016817
    DOI: 10.1016/j.apenergy.2024.124298
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924016817
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124298?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sijie Chen & Hanning Mi & Jian Ping & Zheng Yan & Zeyu Shen & Xuezhi Liu & Ning Zhang & Qing Xia & Chongqing Kang, 2022. "A blockchain consensus mechanism that uses Proof of Solution to optimize energy dispatch and trading," Nature Energy, Nature, vol. 7(6), pages 495-502, June.
    2. Li, Yuanyuan & Li, Junxiang & He, Jianjia & Zhang, Shuyuan, 2021. "The real-time pricing optimization model of smart grid based on the utility function of the logistic function," Energy, Elsevier, vol. 224(C).
    3. Faia, Ricardo & Lezama, Fernando & Soares, João & Pinto, Tiago & Vale, Zita, 2024. "Local electricity markets: A review on benefits, barriers, current trends and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    4. Wu, Jiechen & Hu, Junjie & Ai, Xin & Zhang, Zhan & Hu, Huanyu, 2019. "Multi-time scale energy management of electric vehicle model-based prosumers by using virtual battery model," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Karami, Mahdi & Madlener, Reinhard, 2022. "Business models for peer-to-peer energy trading in Germany based on households’ beliefs and preferences," Applied Energy, Elsevier, vol. 306(PB).
    6. Yucekaya, A., 2022. "Electricity trading for coal-fired power plants in Turkish power market considering uncertainty in spot, derivatives and bilateral contract market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    7. Zhang, Chao & Lasaulce, Samson & Wang, Li & Saludjian, Lucas & Poor, H. Vincent, 2022. "A refined consumer behavior model for energy systems: Application to the pricing and energy-efficiency problems," Applied Energy, Elsevier, vol. 308(C).
    8. Long, Chao & Wu, Jianzhong & Zhou, Yue & Jenkins, Nick, 2018. "Peer-to-peer energy sharing through a two-stage aggregated battery control in a community Microgrid," Applied Energy, Elsevier, vol. 226(C), pages 261-276.
    9. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Xia, Yuanxing & Xu, Qingshan & Chen, Lu & Du, Pengwei, 2022. "The flexible roles of distributed energy storages in peer-to-peer transactive energy market: A state-of-the-art review," Applied Energy, Elsevier, vol. 327(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schwidtal, J.M. & Piccini, P. & Troncia, M. & Chitchyan, R. & Montakhabi, M. & Francis, C. & Gorbatcheva, A. & Capper, T. & Mustafa, M.A. & Andoni, M. & Robu, V. & Bahloul, M. & Scott, I.J. & Mbavarir, 2023. "Emerging business models in local energy markets: A systematic review of peer-to-peer, community self-consumption, and transactive energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    2. Wu, Chun & Chen, Xingying & Hua, Haochen & Yu, Kun & Gan, Lei & Shen, Jun & Ding, Yi, 2024. "Peer-to-peer energy trading optimization for community prosumers considering carbon cap-and-trade," Applied Energy, Elsevier, vol. 358(C).
    3. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    4. Francesca Andreolli & Chiara D'Alpaos & Peter Kort, 2023. "Does P2P Trading Favor Investments in PV-Battery Systems?," Working Papers 2023.02, Fondazione Eni Enrico Mattei.
    5. Barone, G. & Buonomano, A. & Forzano, C. & Palombo, A. & Russo, G., 2023. "The role of energy communities in electricity grid balancing: A flexible tool for smart grid power distribution optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    6. Wang, Dongxue & Fan, Ruguo & Yang, Peiwen & Du, Kang & Xu, Xiaoxia & Chen, Rongkai, 2024. "Research on floating real-time pricing strategy for microgrid operator in local energy market considering shared energy storage leasing," Applied Energy, Elsevier, vol. 368(C).
    7. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    8. Liu, Yinyan & Ma, Jin & Xing, Xinjie & Liu, Xinglu & Wang, Wei, 2022. "A home energy management system incorporating data-driven uncertainty-aware user preference," Applied Energy, Elsevier, vol. 326(C).
    9. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    10. Lee, Zachary E. & Zhang, K. Max, 2023. "Regulated peer-to-peer energy markets for harnessing decentralized demand flexibility," Applied Energy, Elsevier, vol. 336(C).
    11. Zhang, Bidan & He, Guannan & Du, Yang & Wen, Haoran & Huan, Xintao & Xing, Bowen & Huang, Jingsi, 2024. "Assessment of the economic impact of forecasting errors in Peer-to-Peer energy trading," Applied Energy, Elsevier, vol. 374(C).
    12. Liaqat Ali & M. Imran Azim & Nabin B. Ojha & Jan Peters & Vivek Bhandari & Anand Menon & Vinod Tiwari & Jemma Green & S.M. Muyeen, 2023. "Balancing Usage Profiles and Benefitting End Users through Blockchain Based Local Energy Trading: A German Case Study," Energies, MDPI, vol. 16(17), pages 1-18, August.
    13. Park, Sung-Won & Zhang, Zhong & Li, Furong & Son, Sung-Yong, 2021. "Peer-to-peer trading-based efficient flexibility securing mechanism to support distribution system stability," Applied Energy, Elsevier, vol. 285(C).
    14. Kirchhoff, Hannes & Strunz, Kai, 2019. "Key drivers for successful development of peer-to-peer microgrids for swarm electrification," Applied Energy, Elsevier, vol. 244(C), pages 46-62.
    15. Lyu, Cheng & Jia, Youwei & Xu, Zhao, 2021. "Fully decentralized peer-to-peer energy sharing framework for smart buildings with local battery system and aggregated electric vehicles," Applied Energy, Elsevier, vol. 299(C).
    16. Moradi, Amir & Salehi, Javad & Shafie-khah, Miadreza, 2024. "An interactive framework for strategic participation of a price-maker energy hub in the local gas and power markets based on the MPEC method," Energy, Elsevier, vol. 307(C).
    17. Ning Wang & Weisheng Xu & Weihui Shao & Zhiyu Xu, 2019. "A Q-Cube Framework of Reinforcement Learning Algorithm for Continuous Double Auction among Microgrids," Energies, MDPI, vol. 12(15), pages 1-26, July.
    18. Zhou, Shijie & Cao, Sunliang, 2024. "Co-ordinations of ocean energy supported energy sharing between zero-emission cross-harbour buildings in the Greater Bay Area," Applied Energy, Elsevier, vol. 359(C).
    19. Sima, Catalina Alexandra & Popescu, Claudia Laurenta & Popescu, Mihai Octavian & Roscia, Mariacristina & Seritan, George & Panait, Cornel, 2022. "Techno-economic assessment of university energy communities with on/off microgrid," Renewable Energy, Elsevier, vol. 193(C), pages 538-553.
    20. Jianhong Hao & Ting Huang & Yi Sun & Xiangpeng Zhan & Yu Zhang & Peng Wu, 2024. "Optimal Prosumer Operation with Consideration for Bounded Rationality in Peer-to-Peer Energy Trading Systems," Energies, MDPI, vol. 17(7), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924016817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.