IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v142y2018icp983-990.html
   My bibliography  Save this article

Exploiting the waste heat from an alkaline fuel cell via electrochemical cycles

Author

Listed:
  • Zhang, Xin
  • Cai, Ling
  • Liao, Tianjun
  • Zhou, Yinghui
  • Zhao, Yingru
  • Chen, Jincan

Abstract

Based on the current models of an alkaline fuel cell (AFC) and a thermally regenerative electrochemical cycle (TREC), a novel model of the hybrid system consisting of an AFC, n TRECs, and a regenerator is proposed. The maximum power output density of the hybrid system is calculated. It is found that when the regenerative efficiency of TRECs is in the 0.4–0.8 range, the maximum power output density of the hybrid system is about 1.46–1.77 times of that of the AFC. Moreover, the influences of the current density of the AFC and the regeneration efficiency of the TRECs on the performance characteristics of the hybrid system are discussed in detail. The choice criteria of main parameters are given. The performances of several AFC-based hybrid systems are compared. When the AFC is operated at 353 K, the maximum power output density of the AFC-TREC hybrid system is about 2 times of that of the AFC-TEG hybrid system, 2.42 times of that of the AFC-refrigerator hybrid system, 1.17 times of that of the AFC-heat driven hybrid system, respectively. The results obtained show that the proposed model can more efficiently harvest the waste heat released from AFCs than other AFC-based hybrid systems.

Suggested Citation

  • Zhang, Xin & Cai, Ling & Liao, Tianjun & Zhou, Yinghui & Zhao, Yingru & Chen, Jincan, 2018. "Exploiting the waste heat from an alkaline fuel cell via electrochemical cycles," Energy, Elsevier, vol. 142(C), pages 983-990.
  • Handle: RePEc:eee:energy:v:142:y:2018:i:c:p:983-990
    DOI: 10.1016/j.energy.2017.10.112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217318194
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.10.112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Houcheng & Lin, Guoxing & Chen, Jincan, 2011. "The performance analysis and multi-objective optimization of a typical alkaline fuel cell," Energy, Elsevier, vol. 36(7), pages 4327-4332.
    2. Wang, Yuan & Cai, Ling & Liu, Tie & Wang, Junyi & Chen, Jincan, 2015. "An efficient strategy exploiting the waste heat in a solid oxide fuel cell system," Energy, Elsevier, vol. 93(P1), pages 900-907.
    3. Børset, Marit Takla & Wilhelmsen, Øivind & Kjelstrup, Signe & Burheim, Odne Stokke, 2017. "Exploring the potential for waste heat recovery during metal casting with thermoelectric generators: On-site experiments and mathematical modeling," Energy, Elsevier, vol. 118(C), pages 865-875.
    4. Wu, Sijie & Zhang, Houcheng & Ni, Meng, 2016. "Performance assessment of a hybrid system integrating a molten carbonate fuel cell and a thermoelectric generator," Energy, Elsevier, vol. 112(C), pages 520-527.
    5. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "A hybrid system using a regenerative electrochemical cycle to harvest waste heat from the proton exchange membrane fuel cell," Energy, Elsevier, vol. 93(P2), pages 2079-2086.
    6. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "Multi-objective optimization of a continuous thermally regenerative electrochemical cycle for waste heat recovery," Energy, Elsevier, vol. 93(P1), pages 1022-1029.
    7. Long, R. & Bao, Y.J. & Huang, X.M. & Liu, W., 2014. "Exergy analysis and working fluid selection of organic Rankine cycle for low grade waste heat recovery," Energy, Elsevier, vol. 73(C), pages 475-483.
    8. Seok Woo Lee & Yuan Yang & Hyun-Wook Lee & Hadi Ghasemi & Daniel Kraemer & Gang Chen & Yi Cui, 2014. "An electrochemical system for efficiently harvesting low-grade heat energy," Nature Communications, Nature, vol. 5(1), pages 1-6, September.
    9. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "Performance analysis of a thermally regenerative electrochemical cycle for harvesting waste heat," Energy, Elsevier, vol. 87(C), pages 463-469.
    10. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2016. "Performance analysis of a dual loop thermally regenerative electrochemical cycle for waste heat recovery," Energy, Elsevier, vol. 107(C), pages 388-395.
    11. Hsu, Cheng-Ting & Huang, Gia-Yeh & Chu, Hsu-Shen & Yu, Ben & Yao, Da-Jeng, 2011. "Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators," Applied Energy, Elsevier, vol. 88(4), pages 1291-1297, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Xinru & Zhang, Houcheng & Wang, Jiatang & Zhao, Jiapei & Wang, Fu & Miao, He & Yuan, Jinliang & Hou, Shujin, 2020. "A new hybrid system composed of high-temperature proton exchange fuel cell and two-stage thermoelectric generator with Thomson effect: Energy and exergy analyses," Energy, Elsevier, vol. 195(C).
    2. Chenjun Zhang & Hanqi Li & Xi Zhang & Man Shen & Xu Jin, 2024. "The Performance Evaluation of a Hybrid System Combining an Alkaline Fuel Cell with an Inhomogeneous Thermoelectric Generator," Energies, MDPI, vol. 17(9), pages 1-13, April.
    3. Bing Xu & Dongxu Li & Zheshu Ma & Meng Zheng & Yanju Li, 2021. "Thermodynamic Optimization of a High Temperature Proton Exchange Membrane Fuel Cell for Fuel Cell Vehicle Applications," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    4. Dawahdeh, Ahmad I. & Al-Nimr, Moh'd A., 2022. "Power generation by integrating a thermally regenerative electrochemical cycle (TREC) with a biofuel stove," Energy, Elsevier, vol. 251(C).
    5. Zhang, Xin & Rahman, Ehsanur, 2022. "Thermodynamic analysis and optimization of a hybrid power system using thermoradiative device to efficiently recover waste heat from alkaline fuel cell," Renewable Energy, Elsevier, vol. 200(C), pages 1240-1250.
    6. Huang, Yuewu & Li, Danyi & Chen, Zhuo, 2022. "Potential analysis of a system hybridizing dye-sensitized solar cell with thermally regenerative electrochemical devices," Energy, Elsevier, vol. 260(C).
    7. Yingyan Lin & Ronghui Xiao & Liwei Chen & Houcheng Zhang, 2023. "Performance Potential of a Concentrated Photovoltaic-Electrochemical Hybrid System," Energies, MDPI, vol. 17(1), pages 1-21, December.
    8. Guo, Xinru & Zhang, Houcheng, 2020. "Performance analyses of a combined system consisting of high-temperature polymer electrolyte membrane fuel cells and thermally regenerative electrochemical cycles," Energy, Elsevier, vol. 193(C).
    9. Wang, Mingli & Ruan, Jiafen & Zhang, Jian & Jiang, Yefan & Gao, Fei & Zhang, Xin & Rahman, Ehsanur & Guo, Juncheng, 2024. "Modeling, thermodynamic performance analysis, and parameter optimization of a hybrid power generation system coupling thermogalvanic cells with alkaline fuel cells," Energy, Elsevier, vol. 292(C).
    10. Al-Nimr, Moh'd A. & Dawahdeh, Ahmad I. & Ali, Hussain A., 2022. "Power generation by integrating a thermally regenerative electrochemical cycle (TREC) with a solar pond and underground heat exchanger," Renewable Energy, Elsevier, vol. 189(C), pages 663-675.
    11. Zhang, Xin & Ang, Yee Sin, 2022. "Conceptual design and performance optimization of a nighttime electrochemical system for electric power generation via radiative cooling," Energy, Elsevier, vol. 242(C).
    12. Al-Hamed, K.H.M. & Dincer, Ibrahim, 2020. "A novel ammonia molten alkaline fuel cell based integrated powering system for clean rail transportation," Energy, Elsevier, vol. 201(C).
    13. Zhao, Qin & Zhang, Houcheng & Hu, Ziyang & Li, Yangyang, 2021. "An alkaline fuel cell/direct contact membrane distillation hybrid system for cogenerating electricity and freshwater," Energy, Elsevier, vol. 225(C).
    14. Tang, Xin & Li, Guiqiang & Zhao, Xudong, 2021. "Performance analysis of a novel hybrid electrical generation system using photovoltaic/thermal and thermally regenerative electrochemical cycle," Energy, Elsevier, vol. 232(C).
    15. Dawahdeh, Ahmad I. & Al-Nimr, Moh'd.A., 2023. "A novel energy harvesting and battery thermal management in hybrid vehicles using a thermally regenerative electrochemical device," Energy, Elsevier, vol. 270(C).
    16. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2021. "Thermal energy recovery of molten carbonate fuel cells by thermally regenerative electrochemical cycles," Energy, Elsevier, vol. 227(C).
    17. Chen, Ruihua & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Xu, Weicong, 2021. "A cycle research methodology for thermo-chemical engines: From ideal cycle to case study," Energy, Elsevier, vol. 228(C).
    18. Tang, Xin & Li, Guiqiang & Zhao, Xudong & Shi, Kai & Lao, Li, 2022. "Simulation analysis and experimental validation of enhanced photovoltaic thermal module by harnessing heat," Applied Energy, Elsevier, vol. 309(C).
    19. Zhaoda Zhong & Samuel Simon Araya & Vincenzo Liso & Jimin Zhu, 2023. "Multi-Objective Assessment and Optimization of a High-Temperature Proton Exchange Membrane Fuel Cell: Steady-State Analysis," Energies, MDPI, vol. 16(24), pages 1-21, December.
    20. Zhu, Huichao & Zhang, Houcheng, 2023. "Upgrading the low-grade waste heat from alkaline fuel cells via isopropanol-acetone-hydrogen chemical heat pumps," Energy, Elsevier, vol. 265(C).
    21. Zhu, Huichao & Xiao, Liusheng & Kuang, Min & Wang, Jiatang & Zhang, Houcheng, 2024. "Innovative use of air gap membrane distillation to harvest waste heat from alkaline fuel cell for efficient freshwater production: A comprehensive 4E study," Renewable Energy, Elsevier, vol. 225(C).
    22. Dongxu Li & Siwei Li & Zheshu Ma & Bing Xu & Zhanghao Lu & Yanju Li & Meng Zheng, 2021. "Ecological Performance Optimization of a High Temperature Proton Exchange Membrane Fuel Cell," Mathematics, MDPI, vol. 9(12), pages 1-15, June.
    23. Chen, Ruihua & Deng, Shuai & Xu, Weicong & Zhao, Li, 2020. "A graphic analysis method of electrochemical systems for low-grade heat harvesting from a perspective of thermodynamic cycles," Energy, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2021. "Thermal energy recovery of molten carbonate fuel cells by thermally regenerative electrochemical cycles," Energy, Elsevier, vol. 227(C).
    2. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2016. "Ecological analysis of a thermally regenerative electrochemical cycle," Energy, Elsevier, vol. 107(C), pages 95-102.
    3. Li, Baode & Long, Rui & Liu, Zhichun & Liu, Wei, 2016. "Performance analysis of a thermally regenerative electrochemical refrigerator," Energy, Elsevier, vol. 112(C), pages 43-51.
    4. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2016. "Performance analysis of a dual loop thermally regenerative electrochemical cycle for waste heat recovery," Energy, Elsevier, vol. 107(C), pages 388-395.
    5. Cai, Yuhao & Qian, Xin & Su, Ruihang & Jia, Xiongjie & Ying, Jinhui & Zhao, Tianshou & Jiang, Haoran, 2024. "Thermo-electrochemical modeling of thermally regenerative flow batteries," Applied Energy, Elsevier, vol. 355(C).
    6. Chen, Ruihua & Deng, Shuai & Xu, Weicong & Zhao, Li, 2020. "A graphic analysis method of electrochemical systems for low-grade heat harvesting from a perspective of thermodynamic cycles," Energy, Elsevier, vol. 191(C).
    7. Lai, Xiaotian & Long, Rui & Liu, Zhichun & Liu, Wei, 2018. "A hybrid system using direct contact membrane distillation for water production to harvest waste heat from the proton exchange membrane fuel cell," Energy, Elsevier, vol. 147(C), pages 578-586.
    8. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "Multi-objective optimization of a continuous thermally regenerative electrochemical cycle for waste heat recovery," Energy, Elsevier, vol. 93(P1), pages 1022-1029.
    9. Fathabadi, Hassan, 2019. "Solar energy harvesting in buildings using a proposed novel electrochemical device as an alternative to PV modules," Renewable Energy, Elsevier, vol. 133(C), pages 118-125.
    10. Guo, Xinru & Zhang, Houcheng, 2020. "Performance analyses of a combined system consisting of high-temperature polymer electrolyte membrane fuel cells and thermally regenerative electrochemical cycles," Energy, Elsevier, vol. 193(C).
    11. Lin, Jian & Wu, Nianyuan & Li, Li & Xie, Meina & Xie, Shan & Wang, Xiaonan & Brandon, Nigel & Sun, Yifei & Chen, Jincan & Zhao, Yingru, 2022. "Performance and parameter optimization of a capacitive salinity/heat engine for harvesting salinity difference energy and low grade heat," Renewable Energy, Elsevier, vol. 183(C), pages 283-293.
    12. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2018. "Reverse electrodialysis: Modelling and performance analysis based on multi-objective optimization," Energy, Elsevier, vol. 151(C), pages 1-10.
    13. Long, Rui & Lai, Xiaotian & Liu, Zhichun & Liu, Wei, 2018. "A continuous concentration gradient flow electrical energy storage system based on reverse osmosis and pressure retarded osmosis," Energy, Elsevier, vol. 152(C), pages 896-905.
    14. Long, Rui & Lai, Xiaotian & Liu, Zhichun & Liu, Wei, 2019. "Pressure retarded osmosis: Operating in a compromise between power density and energy efficiency," Energy, Elsevier, vol. 172(C), pages 592-598.
    15. Al-Nimr, Moh'd A. & Dawahdeh, Ahmad I. & Ali, Hussain A., 2022. "Power generation by integrating a thermally regenerative electrochemical cycle (TREC) with a solar pond and underground heat exchanger," Renewable Energy, Elsevier, vol. 189(C), pages 663-675.
    16. Dawahdeh, Ahmad I. & Al-Nimr, Moh'd A., 2022. "Power generation by integrating a thermally regenerative electrochemical cycle (TREC) with a biofuel stove," Energy, Elsevier, vol. 251(C).
    17. Long, Rui & Li, Baode & Liu, Zhichun & Liu, Wei, 2015. "A hybrid system using a regenerative electrochemical cycle to harvest waste heat from the proton exchange membrane fuel cell," Energy, Elsevier, vol. 93(P2), pages 2079-2086.
    18. Long, Rui & Zhao, Yanan & Li, Mingliang & Pan, Yao & Liu, Zhichun & Liu, Wei, 2021. "Evaluations of adsorbents and salt-methanol solutions for low-grade heat driven osmotic heat engines," Energy, Elsevier, vol. 229(C).
    19. Zou, Wen-Jiang & Shen, Kun-Yang & Jung, Seunghun & Kim, Young-Bae, 2021. "Application of thermoelectric devices in performance optimization of a domestic PEMFC-based CHP system," Energy, Elsevier, vol. 229(C).
    20. Huang, Yuewu & Li, Danyi & Chen, Zhuo, 2022. "Potential analysis of a system hybridizing dye-sensitized solar cell with thermally regenerative electrochemical devices," Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:142:y:2018:i:c:p:983-990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.