IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6449-d457581.html
   My bibliography  Save this article

Wind Power Ramp Event Forecasting Based on Feature Extraction and Deep Learning

Author

Listed:
  • Li Han

    (School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China)

  • Yan Qiao

    (School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China)

  • Mengjie Li

    (School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China)

  • Liping Shi

    (School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

In order to improve the accuracy of wind power ramp forecasting and reduce the threat of ramps to the safe operation of power systems, a wind power ramp event forecast model based on feature extraction and deep learning is proposed in this work. Firstly, the Optimized Swinging Door Algorithm (OpSDA) is introduced to detect wind power ramp events, and the extraction results of ramp features, such as the ramp rate, are obtained. Then, a ramp forecast model based on a deep learning network is established. The historical wind power and its ramp features are used as the input of the forecast model, thereby strengthening the model’s learning for ramp features and preventing ramp features from being submerged in the complex wind power signal. A Convolutional Neural Network (CNN) is adopted to extract features from model inputs to obtain the coupling relationship between wind power and ramp features, and Long Short-Term Memory (LSTM) is utilized to learn the time-series relationship of the data. The forecast wind power is used as the output of the model, based on which the ramp forecast result is obtained after the ramp detection. Finally, the wind power data from the Elia website is used to verify the forecast performance of the proposed method for wind power ramp events.

Suggested Citation

  • Li Han & Yan Qiao & Mengjie Li & Liping Shi, 2020. "Wind Power Ramp Event Forecasting Based on Feature Extraction and Deep Learning," Energies, MDPI, vol. 13(23), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6449-:d:457581
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6449/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6449/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ouyang, Tinghui & Zha, Xiaoming & Qin, Liang & He, Yusen & Tang, Zhenhao, 2019. "Prediction of wind power ramp events based on residual correction," Renewable Energy, Elsevier, vol. 136(C), pages 781-792.
    2. Yin, Hao & Ou, Zuhong & Huang, Shengquan & Meng, Anbo, 2019. "A cascaded deep learning wind power prediction approach based on a two-layer of mode decomposition," Energy, Elsevier, vol. 189(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junwei Fu & Yuna Ni & Yuming Ma & Jian Zhao & Qiuyi Yang & Shiyi Xu & Xiang Zhang & Yuhua Liu, 2023. "A Visualization-Based Ramp Event Detection Model for Wind Power Generation," Energies, MDPI, vol. 16(3), pages 1-16, January.
    2. António Couto & Paula Costa & Teresa Simões, 2021. "Identification of Extreme Wind Events Using a Weather Type Classification," Energies, MDPI, vol. 14(13), pages 1-16, July.
    3. Tiago Pinto, 2023. "Artificial Intelligence as a Booster of Future Power Systems," Energies, MDPI, vol. 16(5), pages 1-4, February.
    4. Yun, Eunjeong & Hur, Jin, 2021. "Probabilistic estimation model of power curve to enhance power output forecasting of wind generating resources," Energy, Elsevier, vol. 223(C).
    5. Wei, Danxiang & Wang, Jianzhou & Niu, Xinsong & Li, Zhiwu, 2021. "Wind speed forecasting system based on gated recurrent units and convolutional spiking neural networks," Applied Energy, Elsevier, vol. 292(C).
    6. Cui, Yang & He, Yingjie & Xiong, Xiong & Chen, Zhenghong & Li, Fen & Xu, Taotao & Zhang, Fanghong, 2021. "Algorithm for identifying wind power ramp events via novel improved dynamic swinging door," Renewable Energy, Elsevier, vol. 171(C), pages 542-556.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Mao & Wang, Da & Xu, Chuanyu & Dai, Bozhi & Ma, Miaomiao & Su, Xin, 2023. "Power transfer characteristics in fluctuation partition algorithm for wind speed and its application to wind power forecasting," Renewable Energy, Elsevier, vol. 211(C), pages 582-594.
    2. Guglielmo D’Amico & Filippo Petroni & Salvatore Vergine, 2022. "Ramp Rate Limitation of Wind Power: An Overview," Energies, MDPI, vol. 15(16), pages 1-15, August.
    3. Abdulelah Alkesaiberi & Fouzi Harrou & Ying Sun, 2022. "Efficient Wind Power Prediction Using Machine Learning Methods: A Comparative Study," Energies, MDPI, vol. 15(7), pages 1-24, March.
    4. Meng, Anbo & Zhang, Haitao & Yin, Hao & Xian, Zikang & Chen, Shu & Zhu, Zibin & Zhang, Zheng & Rong, Jiayu & Li, Chen & Wang, Chenen & Wu, Zhenbo & Deng, Weisi & Luo, Jianqiang & Wang, Xiaolin, 2023. "A novel multi-gradient evolutionary deep learning approach for few-shot wind power prediction using time-series GAN," Energy, Elsevier, vol. 283(C).
    5. Meng, Anbo & Zhu, Zibin & Deng, Weisi & Ou, Zuhong & Lin, Shan & Wang, Chenen & Xu, Xuancong & Wang, Xiaolin & Yin, Hao & Luo, Jianqiang, 2022. "A novel wind power prediction approach using multivariate variational mode decomposition and multi-objective crisscross optimization based deep extreme learning machine," Energy, Elsevier, vol. 260(C).
    6. Liu, Xin & Cao, Zheming & Zhang, Zijun, 2021. "Short-term predictions of multiple wind turbine power outputs based on deep neural networks with transfer learning," Energy, Elsevier, vol. 217(C).
    7. Junwei Fu & Yuna Ni & Yuming Ma & Jian Zhao & Qiuyi Yang & Shiyi Xu & Xiang Zhang & Yuhua Liu, 2023. "A Visualization-Based Ramp Event Detection Model for Wind Power Generation," Energies, MDPI, vol. 16(3), pages 1-16, January.
    8. Tang, Zhenhao & Zhao, Gengnan & Ouyang, Tinghui, 2021. "Two-phase deep learning model for short-term wind direction forecasting," Renewable Energy, Elsevier, vol. 173(C), pages 1005-1016.
    9. Yang, Ting & Yang, Zhenning & Li, Fei & Wang, Hengyu, 2024. "A short-term wind power forecasting method based on multivariate signal decomposition and variable selection," Applied Energy, Elsevier, vol. 360(C).
    10. Yuanzhuo Du & Kun Zhang & Qianzhi Shao & Zhe Chen, 2023. "A Short-Term Prediction Model of Wind Power with Outliers: An Integration of Long Short-Term Memory, Ensemble Empirical Mode Decomposition, and Sample Entropy," Sustainability, MDPI, vol. 15(7), pages 1-15, April.
    11. He, Yaoyao & Zhu, Chuang & An, Xueli, 2023. "A trend-based method for the prediction of offshore wind power ramp," Renewable Energy, Elsevier, vol. 209(C), pages 248-261.
    12. Sizu Hou & Yisu Hou & Baikui Li & Ziqi Wang, 2023. "Fault Recovery Strategy for Power–Communication Coupled Distribution Network Considering Uncertainty," Energies, MDPI, vol. 16(12), pages 1-21, June.
    13. Paweł Piotrowski & Dariusz Baczyński & Marcin Kopyt & Tomasz Gulczyński, 2022. "Advanced Ensemble Methods Using Machine Learning and Deep Learning for One-Day-Ahead Forecasts of Electric Energy Production in Wind Farms," Energies, MDPI, vol. 15(4), pages 1-30, February.
    14. Qichun Bing & Panpan Zhao & Canzheng Ren & Xueqian Wang & Yiming Zhao, 2024. "Short-Term Traffic Flow Forecasting Method Based on Secondary Decomposition and Conventional Neural Network–Transformer," Sustainability, MDPI, vol. 16(11), pages 1-23, May.
    15. Meng, Anbo & Zhang, Haitao & Dai, Zhongfu & Xian, Zikang & Xiao, Liexi & Rong, Jiayu & Li, Chen & Zhu, Jianbin & Li, Hanhong & Yin, Yiding & Liu, Jiawei & Tang, Yanshu & Zhang, Bin & Yin, Hao, 2024. "An adaptive distribution-matched recurrent network for wind power prediction using time-series distribution period division," Energy, Elsevier, vol. 299(C).
    16. Huang, Hao-Hsuan & Huang, Yun-Hsun, 2024. "Applying green learning to regional wind power prediction and fluctuation risk assessment," Energy, Elsevier, vol. 295(C).
    17. Ghadah Alkhayat & Syed Hamid Hasan & Rashid Mehmood, 2023. "A Hybrid Model of Variational Mode Decomposition and Long Short-Term Memory for Next-Hour Wind Speed Forecasting in a Hot Desert Climate," Sustainability, MDPI, vol. 15(24), pages 1-39, December.
    18. Meng, Anbo & Chen, Shu & Ou, Zuhong & Xiao, Jianhua & Zhang, Jianfeng & Chen, Shun & Zhang, Zheng & Liang, Ruduo & Zhang, Zhan & Xian, Zikang & Wang, Chenen & Yin, Hao & Yan, Baiping, 2022. "A novel few-shot learning approach for wind power prediction applying secondary evolutionary generative adversarial network," Energy, Elsevier, vol. 261(PA).
    19. Qu, Zhijian & Li, Jian & Hou, Xinxing & Gui, Jianglin, 2023. "A D-stacking dual-fusion, spatio-temporal graph deep neural network based on a multi-integrated overlay for short-term wind-farm cluster power multi-step prediction," Energy, Elsevier, vol. 281(C).
    20. Zucatelli, P.J. & Nascimento, E.G.S. & Santos, A.Á.B. & Arce, A.M.G. & Moreira, D.M., 2021. "An investigation on deep learning and wavelet transform to nowcast wind power and wind power ramp: A case study in Brazil and Uruguay," Energy, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6449-:d:457581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.