IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i12p1976-d120857.html
   My bibliography  Save this article

Different Models for Forecasting Wind Power Generation: Case Study

Author

Listed:
  • David Barbosa de Alencar

    (Department of Electrical Engineering, Federal University of Para—UFPA, Belém 66075-110, Brazil)

  • Carolina De Mattos Affonso

    (Department of Electrical Engineering, Federal University of Para—UFPA, Belém 66075-110, Brazil)

  • Roberto Célio Limão de Oliveira

    (Department of Electrical Engineering, Federal University of Para—UFPA, Belém 66075-110, Brazil)

  • Jorge Laureano Moya Rodríguez

    (Department of Industrial Engineering, Universidade Federal da Bahia, Salvador 40170-115, Brazil)

  • Jandecy Cabral Leite

    (Department of Research, Institute of Technology and Education Galileo of Amazon—ITEGAM, Manaus 69020-030, Brazil)

  • José Carlos Reston Filho

    (Department of Postgraduate Curses, IDAAM., Manaus 69055-038, Brazil)

Abstract

Generation of electric energy through wind turbines is one of the practically inexhaustible alternatives of generation. It is considered a source of clean energy, but still needs a lot of research for the development of science and technologies that ensures uniformity in generation, providing a greater participation of this source in the energy matrix, since the wind presents abrupt variations in speed, density and other important variables. In wind-based electrical systems, it is essential to predict at least one day in advance the future values of wind behavior, in order to evaluate the availability of energy for the next period, which is relevant information in the dispatch of the generating units and in the control of the electrical system. This paper develops ultra-short, short, medium and long-term prediction models of wind speed, based on computational intelligence techniques, using artificial neural network models, Autoregressive Integrated Moving Average (ARIMA) and hybrid models including forecasting using wavelets. For the application of the methodology, the meteorological variables of the database of the national organization system of environmental data (SONDA), Petrolina station, from 1 January 2004 to 31 March 2017, were used. A comparison among results by different used approaches is also done and it is also predicted the possibility of power and energy generation using a certain kind of wind generator.

Suggested Citation

  • David Barbosa de Alencar & Carolina De Mattos Affonso & Roberto Célio Limão de Oliveira & Jorge Laureano Moya Rodríguez & Jandecy Cabral Leite & José Carlos Reston Filho, 2017. "Different Models for Forecasting Wind Power Generation: Case Study," Energies, MDPI, vol. 10(12), pages 1-27, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:1976-:d:120857
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/12/1976/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/12/1976/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lei, Ma & Shiyan, Luan & Chuanwen, Jiang & Hongling, Liu & Yan, Zhang, 2009. "A review on the forecasting of wind speed and generated power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 915-920, May.
    2. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Study on offshore wind power potential and wind farm optimization in Hong Kong," Applied Energy, Elsevier, vol. 130(C), pages 519-531.
    3. Wang, Jianzhou & Heng, Jiani & Xiao, Liye & Wang, Chen, 2017. "Research and application of a combined model based on multi-objective optimization for multi-step ahead wind speed forecasting," Energy, Elsevier, vol. 125(C), pages 591-613.
    4. Wang, Deyun & Luo, Hongyuan & Grunder, Olivier & Lin, Yanbing, 2017. "Multi-step ahead wind speed forecasting using an improved wavelet neural network combining variational mode decomposition and phase space reconstruction," Renewable Energy, Elsevier, vol. 113(C), pages 1345-1358.
    5. Kaplan, Yusuf Alper, 2015. "Overview of wind energy in the world and assessment of current wind energy policies in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 562-568.
    6. Foley, Aoife M. & Leahy, Paul G. & Marvuglia, Antonino & McKeogh, Eamon J., 2012. "Current methods and advances in forecasting of wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 1-8.
    7. Wang, Cong & Zhang, Hongli & Fan, Wenhui & Ma, Ping, 2017. "A new chaotic time series hybrid prediction method of wind power based on EEMD-SE and full-parameters continued fraction," Energy, Elsevier, vol. 138(C), pages 977-990.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chia-Sheng Tu & Chih-Ming Hong & Hsi-Shan Huang & Chiung-Hsing Chen, 2020. "Short Term Wind Power Prediction Based on Data Regression and Enhanced Support Vector Machine," Energies, MDPI, vol. 13(23), pages 1-18, November.
    2. Chia-Sheng Tu & Wen-Chang Tsai & Chih-Ming Hong & Whei-Min Lin, 2022. "Short-Term Solar Power Forecasting via General Regression Neural Network with Grey Wolf Optimization," Energies, MDPI, vol. 15(18), pages 1-20, September.
    3. Di Foggia, Giacomo & Beccarello, Massimo, 2024. "European roadmaps to achieving 2030 renewable energy targets," Utilities Policy, Elsevier, vol. 88(C).
    4. Tumiran Tumiran & Lesnanto Multa Putranto & Roni Irnawan & Sarjiya Sarjiya & Candra Febri Nugraha & Adi Priyanto & Ira Savitri, 2022. "Power System Planning Assessment for Optimizing Renewable Energy Integration in the Maluku Electricity System," Sustainability, MDPI, vol. 14(14), pages 1-25, July.
    5. Sharifzadeh, Mahdi & Sikinioti-Lock, Alexandra & Shah, Nilay, 2019. "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 513-538.
    6. Vladimir Simankov & Pavel Buchatskiy & Semen Teploukhov & Stefan Onishchenko & Anatoliy Kazak & Petr Chetyrbok, 2023. "Review of Estimating and Predicting Models of the Wind Energy Amount," Energies, MDPI, vol. 16(16), pages 1-24, August.
    7. Lorenc Malka & Ilirian Konomi & Ardit Gjeta & Skerdi Drenova & Jugert Gjikoka, 2020. "An Approach to the Large-scale Integration of Wind Energy in Albania," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 327-343.
    8. G. Ponkumar & S. Jayaprakash & Karthick Kanagarathinam, 2023. "Advanced Machine Learning Techniques for Accurate Very-Short-Term Wind Power Forecasting in Wind Energy Systems Using Historical Data Analysis," Energies, MDPI, vol. 16(14), pages 1-24, July.
    9. Jae-Chan Park & In-Ho Kim & Hyung-Jo Jung, 2019. "Feasibility Study of Fluctuating Wind Pressure around High-Rise Buildings as a Potential Energy-Harvesting Source," Energies, MDPI, vol. 12(21), pages 1-31, October.
    10. Mark Kipngetich Kiptoo & Oludamilare Bode Adewuyi & Mohammed Elsayed Lotfy & Theophilus Amara & Keifa Vamba Konneh & Tomonobu Senjyu, 2019. "Assessing the Techno-Economic Benefits of Flexible Demand Resources Scheduling for Renewable Energy–Based Smart Microgrid Planning," Future Internet, MDPI, vol. 11(10), pages 1-16, October.
    11. Jasiński, Tomasz, 2020. "Use of new variables based on air temperature for forecasting day-ahead spot electricity prices using deep neural networks: A new approach," Energy, Elsevier, vol. 213(C).
    12. Tayeb Brahimi, 2019. "Using Artificial Intelligence to Predict Wind Speed for Energy Application in Saudi Arabia," Energies, MDPI, vol. 12(24), pages 1-16, December.
    13. Yun, Eunjeong & Hur, Jin, 2021. "Probabilistic estimation model of power curve to enhance power output forecasting of wind generating resources," Energy, Elsevier, vol. 223(C).
    14. Masoud, Alaa A., 2024. "Hybrid wind-solar energy potential modeling using ERA5 and solar irradiation data in google Earth Engine," Renewable Energy, Elsevier, vol. 232(C).
    15. Peng Lu & Lin Ye & Bohao Sun & Cihang Zhang & Yongning Zhao & Jingzhu Teng, 2018. "A New Hybrid Prediction Method of Ultra-Short-Term Wind Power Forecasting Based on EEMD-PE and LSSVM Optimized by the GSA," Energies, MDPI, vol. 11(4), pages 1-23, March.
    16. Luis Fernando Grisales-Noreña & Bonie Johana Restrepo-Cuestas & Brandon Cortés-Caicedo & Jhon Montano & Andrés Alfonso Rosales-Muñoz & Marco Rivera, 2022. "Optimal Location and Sizing of Distributed Generators and Energy Storage Systems in Microgrids: A Review," Energies, MDPI, vol. 16(1), pages 1-30, December.
    17. Irina Meghea, 2023. "Comparison of Statistical Production Models for a Solar and a Wind Power Plant," Mathematics, MDPI, vol. 11(5), pages 1-16, February.
    18. Christy Pérez-Albornoz & Ángel Hernández-Gómez & Victor Ramirez & Damien Guilbert, 2023. "Forecast Optimization of Wind Speed in the North Coast of the Yucatan Peninsula, Using the Single and Double Exponential Method," Clean Technol., MDPI, vol. 5(2), pages 1-22, June.
    19. Ju-Yeol Ryu & Bora Lee & Sungho Park & Seonghyeon Hwang & Hyemin Park & Changhyeong Lee & Dohyeon Kwon, 2022. "Evaluation of Weather Information for Short-Term Wind Power Forecasting with Various Types of Models," Energies, MDPI, vol. 15(24), pages 1-14, December.
    20. Jhony Guzman-Henao & Luis Fernando Grisales-Noreña & Bonie Johana Restrepo-Cuestas & Oscar Danilo Montoya, 2023. "Optimal Integration of Photovoltaic Systems in Distribution Networks from a Technical, Financial, and Environmental Perspective," Energies, MDPI, vol. 16(1), pages 1-19, January.
    21. López, Germánico & Arboleya, Pablo, 2022. "Short-term wind speed forecasting over complex terrain using linear regression models and multivariable LSTM and NARX networks in the Andes Mountains, Ecuador," Renewable Energy, Elsevier, vol. 183(C), pages 351-368.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian, Zheng & Pei, Yan & Zareipour, Hamidreza & Chen, Niya, 2019. "A review and discussion of decomposition-based hybrid models for wind energy forecasting applications," Applied Energy, Elsevier, vol. 235(C), pages 939-953.
    2. Meng, Anbo & Zhu, Zibin & Deng, Weisi & Ou, Zuhong & Lin, Shan & Wang, Chenen & Xu, Xuancong & Wang, Xiaolin & Yin, Hao & Luo, Jianqiang, 2022. "A novel wind power prediction approach using multivariate variational mode decomposition and multi-objective crisscross optimization based deep extreme learning machine," Energy, Elsevier, vol. 260(C).
    3. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
    4. Feng, Cong & Sun, Mucun & Cui, Mingjian & Chartan, Erol Kevin & Hodge, Bri-Mathias & Zhang, Jie, 2019. "Characterizing forecastability of wind sites in the United States," Renewable Energy, Elsevier, vol. 133(C), pages 1352-1365.
    5. Akintayo Temiloluwa Abolude & Wen Zhou, 2018. "Assessment and Performance Evaluation of a Wind Turbine Power Output," Energies, MDPI, vol. 11(8), pages 1-15, August.
    6. Niu, Xinsong & Wang, Jiyang, 2019. "A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 241(C), pages 519-539.
    7. Lorenc Malka & Ilirian Konomi & Ardit Gjeta & Skerdi Drenova & Jugert Gjikoka, 2020. "An Approach to the Large-scale Integration of Wind Energy in Albania," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 327-343.
    8. Jannik Schütz Roungkvist & Peter Enevoldsen, 2020. "Timescale classification in wind forecasting: A review of the state‐of‐the‐art," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 757-768, August.
    9. Li, Yanfei & Shi, Huipeng & Han, Fengze & Duan, Zhu & Liu, Hui, 2019. "Smart wind speed forecasting approach using various boosting algorithms, big multi-step forecasting strategy," Renewable Energy, Elsevier, vol. 135(C), pages 540-553.
    10. Wasilewski, J. & Baczynski, D., 2017. "Short-term electric energy production forecasting at wind power plants in pareto-optimality context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 177-187.
    11. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    12. He, J.Y. & Chan, P.W. & Li, Q.S. & Huang, Tao & Yim, Steve Hung Lam, 2024. "Assessment of urban wind energy resource in Hong Kong based on multi-instrument observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    13. Sun, Chuan & Chen, Yueyi & Cheng, Cheng, 2021. "Imputation of missing data from offshore wind farms using spatio-temporal correlation and feature correlation," Energy, Elsevier, vol. 229(C).
    14. Qu, Zongxi & Mao, Wenqian & Zhang, Kequan & Zhang, Wenyu & Li, Zhipeng, 2019. "Multi-step wind speed forecasting based on a hybrid decomposition technique and an improved back-propagation neural network," Renewable Energy, Elsevier, vol. 133(C), pages 919-929.
    15. Zhao, Xuejing & Wang, Chen & Su, Jinxia & Wang, Jianzhou, 2019. "Research and application based on the swarm intelligence algorithm and artificial intelligence for wind farm decision system," Renewable Energy, Elsevier, vol. 134(C), pages 681-697.
    16. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    17. Liu, Hui & Duan, Zhu & Li, Yanfei & Lu, Haibo, 2018. "A novel ensemble model of different mother wavelets for wind speed multi-step forecasting," Applied Energy, Elsevier, vol. 228(C), pages 1783-1800.
    18. Shahriari, M. & Cervone, G. & Clemente-Harding, L. & Delle Monache, L., 2020. "Using the analog ensemble method as a proxy measurement for wind power predictability," Renewable Energy, Elsevier, vol. 146(C), pages 789-801.
    19. Tian, Chengshi & Hao, Yan & Hu, Jianming, 2018. "A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization," Applied Energy, Elsevier, vol. 231(C), pages 301-319.
    20. Yakoub, Ghali & Mathew, Sathyajith & Leal, Joao, 2023. "Intelligent estimation of wind farm performance with direct and indirect ‘point’ forecasting approaches integrating several NWP models," Energy, Elsevier, vol. 263(PD).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:1976-:d:120857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.