Short-term probabilistic forecasting of wind energy resources using the enhanced ensemble method
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2018.05.157
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xydas, Erotokritos & Qadrdan, Meysam & Marmaras, Charalampos & Cipcigan, Liana & Jenkins, Nick & Ameli, Hossein, 2017. "Probabilistic wind power forecasting and its application in the scheduling of gas-fired generators," Applied Energy, Elsevier, vol. 192(C), pages 382-394.
- Zhang, Yao & Wang, Jianxue & Wang, Xifan, 2014. "Review on probabilistic forecasting of wind power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 255-270.
- Liu, Heping & Shi, Jing & Erdem, Ergin, 2010. "Prediction of wind speed time series using modified Taylor Kriging method," Energy, Elsevier, vol. 35(12), pages 4870-4879.
- Gallego-Castillo, Cristobal & Bessa, Ricardo & Cavalcante, Laura & Lopez-Garcia, Oscar, 2016. "On-line quantile regression in the RKHS (Reproducing Kernel Hilbert Space) for operational probabilistic forecasting of wind power," Energy, Elsevier, vol. 113(C), pages 355-365.
- González-Longatt, Francisco & Medina, Humberto & Serrano González, Javier, 2015. "Spatial interpolation and orographic correction to estimate wind energy resource in Venezuela," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 1-16.
- Wang, Cong & Zhang, Hongli & Fan, Wenhui & Fan, Xiaochao, 2016. "A new wind power prediction method based on chaotic theory and Bernstein Neural Network," Energy, Elsevier, vol. 117(P1), pages 259-271.
- Taylor, James W., 2017. "Probabilistic forecasting of wind power ramp events using autoregressive logit models," European Journal of Operational Research, Elsevier, vol. 259(2), pages 703-712.
- Yuan, Xiaohui & Tan, Qingxiong & Lei, Xiaohui & Yuan, Yanbin & Wu, Xiaotao, 2017. "Wind power prediction using hybrid autoregressive fractionally integrated moving average and least square support vector machine," Energy, Elsevier, vol. 129(C), pages 122-137.
- Yan, Jie & Liu, Yongqian & Han, Shuang & Wang, Yimei & Feng, Shuanglei, 2015. "Reviews on uncertainty analysis of wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1322-1330.
- Cassola, Federico & Burlando, Massimiliano, 2012. "Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output," Applied Energy, Elsevier, vol. 99(C), pages 154-166.
- Heinermann, Justin & Kramer, Oliver, 2016. "Machine learning ensembles for wind power prediction," Renewable Energy, Elsevier, vol. 89(C), pages 671-679.
- Sun, Gaiping & Jiang, Chuanwen & Cheng, Pan & Liu, Yangyang & Wang, Xu & Fu, Yang & He, Yang, 2018. "Short-term wind power forecasts by a synthetical similar time series data mining method," Renewable Energy, Elsevier, vol. 115(C), pages 575-584.
- Dadkhah, Mojtaba & Jahangoshai Rezaee, Mustafa & Zare Chavoshi, Ahmad, 2018. "Short-term power output forecasting of hourly operation in power plant based on climate factors and effects of wind direction and wind speed," Energy, Elsevier, vol. 148(C), pages 775-788.
- Jursa, René & Rohrig, Kurt, 2008. "Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models," International Journal of Forecasting, Elsevier, vol. 24(4), pages 694-709.
- Nima Amjady & Oveis Abedinia, 2017. "Short Term Wind Power Prediction Based on Improved Kriging Interpolation, Empirical Mode Decomposition, and Closed-Loop Forecasting Engine," Sustainability, MDPI, vol. 9(11), pages 1-18, November.
- Salcedo-Sanz, Sancho & Ángel M. Pérez-Bellido, & Ortiz-García, Emilio G. & Portilla-Figueras, Antonio & Prieto, Luis & Paredes, Daniel, 2009. "Hybridizing the fifth generation mesoscale model with artificial neural networks for short-term wind speed prediction," Renewable Energy, Elsevier, vol. 34(6), pages 1451-1457.
- Alessandrini, S. & Delle Monache, L. & Sperati, S. & Nissen, J.N., 2015. "A novel application of an analog ensemble for short-term wind power forecasting," Renewable Energy, Elsevier, vol. 76(C), pages 768-781.
- Wang, Jianzhou & Hu, Jianming & Ma, Kailiang & Zhang, Yixin, 2015. "A self-adaptive hybrid approach for wind speed forecasting," Renewable Energy, Elsevier, vol. 78(C), pages 374-385.
- Liu, Da & Wang, Jilong & Wang, Hui, 2015. "Short-term wind speed forecasting based on spectral clustering and optimised echo state networks," Renewable Energy, Elsevier, vol. 78(C), pages 599-608.
- Sharifian, Amir & Ghadi, M. Jabbari & Ghavidel, Sahand & Li, Li & Zhang, Jiangfeng, 2018. "A new method based on Type-2 fuzzy neural network for accurate wind power forecasting under uncertain data," Renewable Energy, Elsevier, vol. 120(C), pages 220-230.
- Erdem, Ergin & Shi, Jing, 2011. "ARMA based approaches for forecasting the tuple of wind speed and direction," Applied Energy, Elsevier, vol. 88(4), pages 1405-1414, April.
- Foley, Aoife M. & Leahy, Paul G. & Marvuglia, Antonino & McKeogh, Eamon J., 2012. "Current methods and advances in forecasting of wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 1-8.
- Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
- Liu, Jinqiang & Wang, Xiaoru & Lu, Yun, 2017. "A novel hybrid methodology for short-term wind power forecasting based on adaptive neuro-fuzzy inference system," Renewable Energy, Elsevier, vol. 103(C), pages 620-629.
- Pinson, P. & Nielsen, H.Aa. & Madsen, H. & Kariniotakis, G., 2009. "Skill forecasting from ensemble predictions of wind power," Applied Energy, Elsevier, vol. 86(7-8), pages 1326-1334, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yeojin Kim & Jin Hur, 2020. "An Ensemble Forecasting Model of Wind Power Outputs Based on Improved Statistical Approaches," Energies, MDPI, vol. 13(5), pages 1-11, March.
- Bilal, Boudy & Adjallah, Kondo Hloindo & Sava, Alexandre & Yetilmezsoy, Kaan & Ouassaid, Mohammed, 2023. "Wind turbine output power prediction and optimization based on a novel adaptive neuro-fuzzy inference system with the moving window," Energy, Elsevier, vol. 263(PE).
- Kim, Gyeongmin & Hur, Jin, 2021. "Probabilistic modeling of wind energy potential for power grid expansion planning," Energy, Elsevier, vol. 230(C).
- Jônatas Belotti & Hugo Siqueira & Lilian Araujo & Sérgio L. Stevan & Paulo S.G. de Mattos Neto & Manoel H. N. Marinho & João Fausto L. de Oliveira & Fábio Usberti & Marcos de Almeida Leone Filho & Att, 2020. "Neural-Based Ensembles and Unorganized Machines to Predict Streamflow Series from Hydroelectric Plants," Energies, MDPI, vol. 13(18), pages 1-22, September.
- Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
- Lu, Hongfang & Ma, Xin & Huang, Kun & Azimi, Mohammadamin, 2020. "Prediction of offshore wind farm power using a novel two-stage model combining kernel-based nonlinear extension of the Arps decline model with a multi-objective grey wolf optimizer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
- Korprasertsak, Natapol & Leephakpreeda, Thananchai, 2019. "Robust short-term prediction of wind power generation under uncertainty via statistical interpretation of multiple forecasting models," Energy, Elsevier, vol. 180(C), pages 387-397.
- Anamarija Falkoni & Antun Pfeifer & Goran Krajačić, 2020. "Vehicle-to-Grid in Standard and Fast Electric Vehicle Charging: Comparison of Renewable Energy Source Utilization and Charging Costs," Energies, MDPI, vol. 13(6), pages 1-22, March.
- Maolin Cheng & Jiano Li & Yun Liu & Bin Liu, 2020. "Forecasting Clean Energy Consumption in China by 2025: Using Improved Grey Model GM (1, N)," Sustainability, MDPI, vol. 12(2), pages 1-20, January.
- Jennie Molinder & Sebastian Scher & Erik Nilsson & Heiner Körnich & Hans Bergström & Anna Sjöblom, 2020. "Probabilistic Forecasting of Wind Turbine Icing Related Production Losses Using Quantile Regression Forests," Energies, MDPI, vol. 14(1), pages 1-19, December.
- Wang, Huaizhi & Xue, Wenli & Liu, Yitao & Peng, Jianchun & Jiang, Hui, 2020. "Probabilistic wind power forecasting based on spiking neural network," Energy, Elsevier, vol. 196(C).
- da Silva, Ramon Gomes & Ribeiro, Matheus Henrique Dal Molin & Moreno, Sinvaldo Rodrigues & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2021. "A novel decomposition-ensemble learning framework for multi-step ahead wind energy forecasting," Energy, Elsevier, vol. 216(C).
- Wang, Huaizhi & Meng, Anjian & Liu, Yitao & Fu, Xueqian & Cao, Guangzhong, 2019. "Unscented Kalman Filter based interval state estimation of cyber physical energy system for detection of dynamic attack," Energy, Elsevier, vol. 188(C).
- Liu, Hongyi & Han, Hua & Sun, Yao & Shi, Guangze & Su, Mei & Liu, Zhangjie & Wang, Hongfei & Deng, Xiaofei, 2022. "Short-term wind power interval prediction method using VMD-RFG and Att-GRU," Energy, Elsevier, vol. 251(C).
- Yun, Eunjeong & Hur, Jin, 2021. "Probabilistic estimation model of power curve to enhance power output forecasting of wind generating resources," Energy, Elsevier, vol. 223(C).
- Sun, Mucun & Feng, Cong & Zhang, Jie, 2020. "Multi-distribution ensemble probabilistic wind power forecasting," Renewable Energy, Elsevier, vol. 148(C), pages 135-149.
- Lee, Yerim & Hur, Jin, 2019. "A simultaneous approach implementing wind-powered electric vehicle charging stations for charging demand dispersion," Renewable Energy, Elsevier, vol. 144(C), pages 172-179.
- Mayer, Martin János & Biró, Bence & Szücs, Botond & Aszódi, Attila, 2023. "Probabilistic modeling of future electricity systems with high renewable energy penetration using machine learning," Applied Energy, Elsevier, vol. 336(C).
- Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
- Talaat, M. & Farahat, M.A. & Elkholy, M.H., 2019. "Renewable power integration: Experimental and simulation study to investigate the ability of integrating wave, solar and wind energies," Energy, Elsevier, vol. 170(C), pages 668-682.
- Julio Barzola-Monteses & Mónica Mite-León & Mayken Espinoza-Andaluz & Juan Gómez-Romero & Waldo Fajardo, 2019. "Time Series Analysis for Predicting Hydroelectric Power Production: The Ecuador Case," Sustainability, MDPI, vol. 11(23), pages 1-19, November.
- Fan, Huijing & Zhen, Zhao & Liu, Nian & Sun, Yiqian & Chang, Xiqiang & Li, Yu & Wang, Fei & Mi, Zengqiang, 2023. "Fluctuation pattern recognition based ultra-short-term wind power probabilistic forecasting method," Energy, Elsevier, vol. 266(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- González-Sopeña, J.M. & Pakrashi, V. & Ghosh, B., 2021. "An overview of performance evaluation metrics for short-term statistical wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Lahouar, A. & Ben Hadj Slama, J., 2017. "Hour-ahead wind power forecast based on random forests," Renewable Energy, Elsevier, vol. 109(C), pages 529-541.
- Tascikaraoglu, A. & Uzunoglu, M., 2014. "A review of combined approaches for prediction of short-term wind speed and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 243-254.
- Jujie Wang & Yanfeng Wang & Yaning Li, 2018. "A Novel Hybrid Strategy Using Three-Phase Feature Extraction and a Weighted Regularized Extreme Learning Machine for Multi-Step Ahead Wind Speed Prediction," Energies, MDPI, vol. 11(2), pages 1-33, February.
- López, Germánico & Arboleya, Pablo, 2022. "Short-term wind speed forecasting over complex terrain using linear regression models and multivariable LSTM and NARX networks in the Andes Mountains, Ecuador," Renewable Energy, Elsevier, vol. 183(C), pages 351-368.
- Wang, Jujie & Li, Yaning, 2018. "Multi-step ahead wind speed prediction based on optimal feature extraction, long short term memory neural network and error correction strategy," Applied Energy, Elsevier, vol. 230(C), pages 429-443.
- Chen, Xue-Jun & Zhao, Jing & Jia, Xiao-Zhong & Li, Zhong-Long, 2021. "Multi-step wind speed forecast based on sample clustering and an optimized hybrid system," Renewable Energy, Elsevier, vol. 165(P1), pages 595-611.
- Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
- Shahriari, M. & Cervone, G. & Clemente-Harding, L. & Delle Monache, L., 2020. "Using the analog ensemble method as a proxy measurement for wind power predictability," Renewable Energy, Elsevier, vol. 146(C), pages 789-801.
- Gensler, André & Sick, Bernhard & Vogt, Stephan, 2018. "A review of uncertainty representations and metaverification of uncertainty assessment techniques for renewable energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 352-379.
- Jung, Jaesung & Broadwater, Robert P., 2014. "Current status and future advances for wind speed and power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 762-777.
- Chinmoy, Lakshmi & Iniyan, S. & Goic, Ranko, 2019. "Modeling wind power investments, policies and social benefits for deregulated electricity market – A review," Applied Energy, Elsevier, vol. 242(C), pages 364-377.
- Chen, Kuilin & Yu, Jie, 2014. "Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach," Applied Energy, Elsevier, vol. 113(C), pages 690-705.
- Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
- Wasilewski, J. & Baczynski, D., 2017. "Short-term electric energy production forecasting at wind power plants in pareto-optimality context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 177-187.
- Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.
- Korprasertsak, Natapol & Leephakpreeda, Thananchai, 2019. "Robust short-term prediction of wind power generation under uncertainty via statistical interpretation of multiple forecasting models," Energy, Elsevier, vol. 180(C), pages 387-397.
- Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
- Vadim Manusov & Pavel Matrenin & Muso Nazarov & Svetlana Beryozkina & Murodbek Safaraliev & Inga Zicmane & Anvari Ghulomzoda, 2023. "Short-Term Prediction of the Wind Speed Based on a Learning Process Control Algorithm in Isolated Power Systems," Sustainability, MDPI, vol. 15(2), pages 1-12, January.
- Yu, Jie & Chen, Kuilin & Mori, Junichi & Rashid, Mudassir M., 2013. "A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction," Energy, Elsevier, vol. 61(C), pages 673-686.
More about this item
Keywords
Probabilistic wind power forecasting; Short-term forecasting; Ensemble method; Temporal ensemble; Spatial ensemble;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:157:y:2018:i:c:p:211-226. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.