IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v285y2023ics0360544223027779.html
   My bibliography  Save this article

Energy analysis and control scheme optimizations for a recuperated gas turbine with variable power offtakes/inputs

Author

Listed:
  • Wang, Tao
  • Zhang, Yu
  • Yin, Zhao
  • Zhang, Hua-liang
  • Qian, Ye-jian

Abstract

An innovative hybrid electric propulsion system (HEPS) is used for recuperated gas turbine (RGT) to avoid partial-load efficiency deterioration. Power offtakes/inputs of high and low-pressure shafts can be regulated by electric machines to achieve decoupling control in the innovative HEPS. The HEPS brings higher heating temperature in the combustor and significantly higher thermal efficiency at partial-load by optimizing the control scheme. A component-level model is used to conduct energy and performance analyses for RGT. The control scheme is optimized to enhance partial-load efficiency and protect RGT from temperature overrun, rotational speed overrun, and compressor surge.

Suggested Citation

  • Wang, Tao & Zhang, Yu & Yin, Zhao & Zhang, Hua-liang & Qian, Ye-jian, 2023. "Energy analysis and control scheme optimizations for a recuperated gas turbine with variable power offtakes/inputs," Energy, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223027779
    DOI: 10.1016/j.energy.2023.129383
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223027779
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129383?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haglind, F., 2010. "Variable geometry gas turbines for improving the part-load performance of marine combined cycles – Gas turbine performance," Energy, Elsevier, vol. 35(2), pages 562-570.
    2. Kim, T.S. & Hwang, S.H., 2006. "Part load performance analysis of recuperated gas turbines considering engine configuration and operation strategy," Energy, Elsevier, vol. 31(2), pages 260-277.
    3. Sziroczak, David & Jankovics, Istvan & Gal, Istvan & Rohacs, Daniel, 2020. "Conceptual design of small aircraft with hybrid-electric propulsion systems," Energy, Elsevier, vol. 204(C).
    4. Donateo, Teresa & Spedicato, Luigi, 2017. "Fuel economy of hybrid electric flight," Applied Energy, Elsevier, vol. 206(C), pages 723-738.
    5. Wang, Tao & Zhang, Yu & Yin, Zhao & Qiu, Liang & Hua, Yang & Zhang, Xian-wen & Qian, Ye-jian, 2023. "Decoupling control scheme optimization and energy analysis for a triaxial gas turbine based on the variable power offtakes/inputs," Energy, Elsevier, vol. 262(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Tao & Zhang, Yu & Yin, Zhao & Qiu, Liang & Hua, Yang & Zhang, Xian-wen & Qian, Ye-jian, 2023. "Decoupling control scheme optimization and energy analysis for a triaxial gas turbine based on the variable power offtakes/inputs," Energy, Elsevier, vol. 262(PB).
    2. Zhang, Jinning & Roumeliotis, Ioannis & Zolotas, Argyrios, 2022. "Model-based fully coupled propulsion-aerodynamics optimization for hybrid electric aircraft energy management strategy," Energy, Elsevier, vol. 245(C).
    3. Huang, Zhifeng & Yang, Cheng & Yang, Haixia & Ma, Xiaoqian, 2018. "Off-design heating/power flexibility for steam injected gas turbine based CCHP considering variable geometry operation," Energy, Elsevier, vol. 165(PA), pages 1048-1060.
    4. Wang, Zefeng & Han, Wei & Zhang, Na & Liu, Meng & Jin, Hongguang, 2017. "Effect of an alternative operating strategy for gas turbine on a combined cooling heating and power system," Applied Energy, Elsevier, vol. 205(C), pages 163-172.
    5. Jiang, Kai & Yan, Xiaohe & Liu, Nian & Wang, Peng, 2022. "Energy trade-offs in coupled ICM and electricity market under dynamic carbon emission intensity," Energy, Elsevier, vol. 260(C).
    6. Wang, Weida & Chen, Yincong & Yang, Chao & Li, Ying & Xu, Bin & Xiang, Changle, 2022. "An enhanced hypotrochoid spiral optimization algorithm based intertwined optimal sizing and control strategy of a hybrid electric air-ground vehicle," Energy, Elsevier, vol. 257(C).
    7. Yang, Cheng & Huang, Zhifeng & Ma, Xiaoqian, 2018. "Comparative study on off-design characteristics of CHP based on GTCC under alternative operating strategy for gas turbine," Energy, Elsevier, vol. 145(C), pages 823-838.
    8. Satya Gopisetty & Peter Treffinger, 2016. "Generic Combined Heat and Power (CHP) Model for the Concept Phase of Energy Planning Process," Energies, MDPI, vol. 10(1), pages 1-17, December.
    9. Lee, Jong Jun & Jeon, Mu Sung & Kim, Tong Seop, 2010. "The influence of water and steam injection on the performance of a recuperated cycle microturbine for combined heat and power application," Applied Energy, Elsevier, vol. 87(4), pages 1307-1316, April.
    10. Kim, Min Jae & Kim, Jeong Ho & Kim, Tong Seop, 2018. "The effects of internal leakage on the performance of a micro gas turbine," Applied Energy, Elsevier, vol. 212(C), pages 175-184.
    11. Mokhtari, Hamid & Ahmadisedigh, Hossein & Ameri, Mohammad, 2017. "The optimal design and 4E analysis of double pressure HRSG utilizing steam injection for Damavand power plant," Energy, Elsevier, vol. 118(C), pages 399-413.
    12. Lin, Xiaolong & Meng, Xianchen & Song, Huchao & Liu, Yinhe, 2024. "Efficiency improvement and flexibility enhancement by molten salt heat storage for integrated gasification chemical-looping combustion combined cycle under partial loads," Energy, Elsevier, vol. 303(C).
    13. Zhang, Haonan & Duan, Buren & Wu, Lizhi & Hua, Zuohao & Bao, Zijing & Guo, Ning & Ye, Yinghua & Galfetti, Luciano & DeLuca, Luigi T. & Shen, Ruiqi, 2021. "Actualization of an efficient throttleable laser propulsion mode," Energy, Elsevier, vol. 221(C).
    14. Sayyaadi, Hoseyn & Mehrabipour, Reza, 2012. "Efficiency enhancement of a gas turbine cycle using an optimized tubular recuperative heat exchanger," Energy, Elsevier, vol. 38(1), pages 362-375.
    15. Małgorzata Pawlak & Michał Kuźniar, 2022. "The Effects of the Use of Algae and Jatropha Biofuels on Aircraft Engine Exhaust Emissions in Cruise Phase," Sustainability, MDPI, vol. 14(11), pages 1-10, May.
    16. Walnum, Harald Taxt & Nekså, Petter & Nord, Lars O. & Andresen, Trond, 2013. "Modelling and simulation of CO2 (carbon dioxide) bottoming cycles for offshore oil and gas installations at design and off-design conditions," Energy, Elsevier, vol. 59(C), pages 513-520.
    17. Huang, Jingjian & Xu, Yujie & Guo, Huan & Geng, Xiaoqian & Chen, Haisheng, 2022. "Dynamic performance and control scheme of variable-speed compressed air energy storage," Applied Energy, Elsevier, vol. 325(C).
    18. Jiménez-Espadafor Aguilar, Francisco & García, Miguel Torres & Trujillo, Elisa Carvajal & Becerra Villanueva, José Antonio & Florencio Ojeda, Francisco J., 2011. "Prediction of performance, energy savings and increase in profitability of two gas turbine steam generator cogeneration plant, based on experimental data," Energy, Elsevier, vol. 36(2), pages 742-754.
    19. Khaoula Derbel & Károly Beneda, 2020. "Sliding Mode Control for Micro Turbojet Engine Using Turbofan Power Ratio as Control Law," Energies, MDPI, vol. 13(18), pages 1-23, September.
    20. Larsen, Ulrik & Pierobon, Leonardo & Baldi, Francesco & Haglind, Fredrik & Ivarsson, Anders, 2015. "Development of a model for the prediction of the fuel consumption and nitrogen oxides emission trade-off for large ships," Energy, Elsevier, vol. 80(C), pages 545-555.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223027779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.