IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v193y2020ics0360544219324818.html
   My bibliography  Save this article

Study on flame structure and extinction mechanism of dimethyl ether spherical diffusion flames

Author

Listed:
  • Kang, Yinhu
  • Wang, Qiang
  • Zhang, Pengyuan
  • Liu, Congcong
  • Lu, Xiaofeng
  • Wang, Quanhai

Abstract

Flame extinction which belongs to one of the most important limit combustion phenomena plays a vital role in the combustion safety, efficiency, and stability, and additionally, it is also important for fire safety research. Hence studies on the flame extinction mechanism is of fundamental and practical significances in the combustion science. In this paper, the structure dynamics and extinction mechanism of dimethyl ether (DME) hot and cool spherical diffusion flames are studied by experiments and simulations using detailed chemistry and transport models. It was found that DME cool flame had an extended flammability limit in terms of the ambient oxygen mole fraction (XO2* = 7.9%) than the hot flame (XO2* = 23.2%). DME hot flame was much more sensitive than the cool flame with respect to the variation in XO2*. Explosive chemical mode with complex eigenvalues with positive real part was observed within the near-extinction region, either for hot or cool flame. Additionally, oscillation-induced extinction was also observed in this region, which would make the practical flame extinction point (XO2* = 24.04%) deviated from the steady-state extinction turning point of the S-curve (XO2* = 23.2%). The hot-flame extinction was mainly governed by high-temperature reactions involving small molecules, while the cool flame mainly by low-temperature reactions involving large hydrocarbons.

Suggested Citation

  • Kang, Yinhu & Wang, Qiang & Zhang, Pengyuan & Liu, Congcong & Lu, Xiaofeng & Wang, Quanhai, 2020. "Study on flame structure and extinction mechanism of dimethyl ether spherical diffusion flames," Energy, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:energy:v:193:y:2020:i:c:s0360544219324818
    DOI: 10.1016/j.energy.2019.116786
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219324818
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116786?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yu & Li, Hailin & Guo, Hongsheng & Wang, Hu & Yao, Mingfa, 2018. "A numerical study on the chemical kinetics process during auto-ignition of n-heptane in a direct injection compression ignition engine," Applied Energy, Elsevier, vol. 212(C), pages 909-918.
    2. Akhtar, Saad & Khan, Mohammed N. & Kurnia, Jundika C. & Shamim, Tariq, 2017. "Investigation of energy conversion and flame stability in a curved micro-combustor for thermo-photovoltaic (TPV) applications," Applied Energy, Elsevier, vol. 192(C), pages 134-145.
    3. Xuan, Tiemin & Cao, Jiawei & He, Zhixia & Wang, Qian & Zhong, Wenjun & Leng, Xianyin & Li, Da & Shang, Weiwei, 2018. "A study of soot quantification in diesel flame with hydrogenated catalytic biodiesel in a constant volume combustion chamber," Energy, Elsevier, vol. 145(C), pages 691-699.
    4. Kang, Yinhu & Sun, Yuming & Lu, Xiaofeng & Gou, Xiaolong & Sun, Sicong & Yan, Jin & Song, Yangfan & Zhang, Pengyuan & Wang, Quanhai & Ji, Xuanyu, 2018. "Soot formation characteristics of ethylene premixed burner-stabilized stagnation flame with dimethyl ether addition," Energy, Elsevier, vol. 150(C), pages 709-721.
    5. Lee, Seungro & Ha, Heonrok & Dunn-Rankin, Derek & Kwon, Oh Chae, 2017. "Effects of pressure on structure and extinction limits of counterflow nonpremixed water-laden methane/air flames," Energy, Elsevier, vol. 134(C), pages 545-553.
    6. Ku, Jae Won & Choi, Sun & Kim, Hee Kyung & Lee, Seungro & Kwon, Oh Chae, 2018. "Extinction limits and structure of counterflow nonpremixed methane-ammonia/air flames," Energy, Elsevier, vol. 165(PA), pages 314-325.
    7. Yuan, Ye & Li, GuoXiu & Sun, ZuoYu & Li, HongMeng & Zhou, ZiHang, 2016. "Experimental study on the dynamical features of a partially premixed methane jet flame in coflow," Energy, Elsevier, vol. 111(C), pages 593-598.
    8. Li, Yaopeng & Jia, Ming & Kokjohn, Sage L. & Chang, Yachao & Reitz, Rolf D., 2018. "Comprehensive analysis of exergy destruction sources in different engine combustion regimes," Energy, Elsevier, vol. 149(C), pages 697-708.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Haonan & Duan, Buren & Wu, Lizhi & Hua, Zuohao & Bao, Zijing & Guo, Ning & Ye, Yinghua & Galfetti, Luciano & DeLuca, Luigi T. & Shen, Ruiqi, 2021. "Actualization of an efficient throttleable laser propulsion mode," Energy, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chu, Huaqiang & Han, Weiwei & Cao, Wenjian & Gu, Mingyan & Xu, Guangju, 2019. "Effect of methane addition to ethylene on the morphology and size distribution of soot in a laminar co-flow diffusion flame," Energy, Elsevier, vol. 166(C), pages 392-400.
    2. Xu, Cangsu & Wang, Hanyu & Oppong, Francis & Li, Xiaolu & Zhou, Kangquan & Zhou, Wenhua & Wu, Siyuan & Wang, Chongming, 2020. "Determination of laminar burning characteristics of a surrogate for a pyrolysis fuel using constant volume method," Energy, Elsevier, vol. 190(C).
    3. Luo, Minye & Liu, Dong, 2018. "Effects of dimethyl ether addition on soot formation, evolution and characteristics in flame-wall interactions," Energy, Elsevier, vol. 164(C), pages 642-654.
    4. Li, Youping & Zhang, Yiran & Zhan, Reggie & Huang, Zhen & Lin, He, 2020. "Effects of ammonia addition on PAH formation in laminar premixed ethylene flames based on laser-induced fluorescence measurement," Energy, Elsevier, vol. 213(C).
    5. Chen Zhang & Lei Luo & Wei Chen & Fei Yang & Gang Luo & Junming Xu, 2022. "Experimental Investigation on the Performance of an Aviation Piston Engine Fueled with Bio-Jet Fuel Prepared via Thermochemical Conversion of Triglyceride," Energies, MDPI, vol. 15(9), pages 1-13, April.
    6. Peng, Qingguo & Xie, Bo & Yang, Wenming & Tang, Shihao & Li, Zhenwei & Zhou, Peng & Luo, Ningkang, 2021. "Effects of porosity and multilayers of porous medium on the hydrogen-fueled combustion and micro-thermophotovoltaic," Renewable Energy, Elsevier, vol. 174(C), pages 391-402.
    7. Kiani, Mehrdad & Houshfar, Ehsan & Ashjaee, Mehdi, 2019. "Experimental investigations on the flame structure and temperature field of landfill gas in impinging slot burners," Energy, Elsevier, vol. 170(C), pages 507-520.
    8. Zhao, Rui & Liu, Dong, 2022. "Temperature dependence of chemical effects of ethanol and dimethyl ether mixing on benzene and PAHs formation in ethylene counter-flow diffusion flames," Energy, Elsevier, vol. 257(C).
    9. Aravind, B. & Khandelwal, Bhupendra & Ramakrishna, P.A. & Kumar, Sudarshan, 2020. "Towards the development of a high power density, high efficiency, micro power generator," Applied Energy, Elsevier, vol. 261(C).
    10. Fontana, Éliton & Battiston, Lucas & Oliveira, Rosivaldo G.A. & Capeletto, Claudia A. & Luz, Luiz F.L., 2022. "Beyond the combustion chamber: Heat transfer and its impact on micro-thermophotovoltaic systems performance," Energy, Elsevier, vol. 239(PC).
    11. Xuan, Tiemin & Sun, Zhongcheng & EL-Seesy, Ahmed I. & Mi, Yonggang & Zhong, Wenjun & He, Zhixia & Wang, Qian & Sun, Jianbing & El-Batsh, Hesham M. & Cao, Jiawei, 2021. "An optical study on spray and combustion characteristics of ternary hydrogenated catalytic biodiesel/methanol/n-octanol blends; part П: Liquid length and in-flame soot," Energy, Elsevier, vol. 227(C).
    12. Zhang, Yanzhi & Li, Zilong & Tamilselvan, Pachiannan & Jiang, Chenxu & He, Zhixia & Zhong, Wenjun & Qian, Yong & Wang, Qian & Lu, Xingcai, 2019. "Experimental study of combustion and emission characteristics of gasoline compression ignition (GCI) engines fueled by gasoline-hydrogenated catalytic biodiesel blends," Energy, Elsevier, vol. 187(C).
    13. Yin, Lianhao & Lundgren, Marcus & Wang, Zhenkan & Stamatoglou, Panagiota & Richter, Mattias & Andersson, Öivind & Tunestål, Per, 2019. "High efficient internal combustion engine using partially premixed combustion with multiple injections," Applied Energy, Elsevier, vol. 233, pages 516-523.
    14. Xie, Bo & Peng, Qingguo & E, Jiaqiang & Tu, Yaojie & Wei, Jia & Tang, Shihao & Song, Yangyang & Fu, Guang, 2022. "Effects of CO addition and multi-factors optimization on hydrogen/air combustion characteristics and thermal performance based on grey relational analysis," Energy, Elsevier, vol. 255(C).
    15. Zhang, Haonan & Duan, Buren & Wu, Lizhi & Hua, Zuohao & Bao, Zijing & Guo, Ning & Ye, Yinghua & Galfetti, Luciano & DeLuca, Luigi T. & Shen, Ruiqi, 2021. "Actualization of an efficient throttleable laser propulsion mode," Energy, Elsevier, vol. 221(C).
    16. Li, Yaopeng & Jia, Ming & Han, Xu & Bai, Xue-Song, 2021. "Towards a comprehensive optimization of engine efficiency and emissions by coupling artificial neural network (ANN) with genetic algorithm (GA)," Energy, Elsevier, vol. 225(C).
    17. Yang, Ke & Chen, Kaifeng & Ji, Hong & Xing, Zhixiang & Hao, Yongmei & Wu, Jie & Jiang, Juncheng, 2021. "Experimental study on the effect of modified attapulgite powder with different outlet blockage ratios on methane-air explosion," Energy, Elsevier, vol. 237(C).
    18. Jinshen Tong & Tao Cai, 2022. "Enhancing Thermal Performance, Exergy and Thermodynamics Efficiency of Premixed Methane/Air Micro-Planar Combustor in Micro-Thermophotovoltaic Systems," Energies, MDPI, vol. 16(1), pages 1-21, December.
    19. Lopez, Luis & Giusti, Andrea & Gutheil, Eva & Olguin, Hernan, 2022. "On the effects of the fuel injection phase on heat release and soot formation in counterflow flames," Energy, Elsevier, vol. 254(PB).
    20. Kang, Yinhu & Sun, Yuming & Lu, Xiaofeng & Gou, Xiaolong & Sun, Sicong & Yan, Jin & Song, Yangfan & Zhang, Pengyuan & Wang, Quanhai & Ji, Xuanyu, 2018. "Soot formation characteristics of ethylene premixed burner-stabilized stagnation flame with dimethyl ether addition," Energy, Elsevier, vol. 150(C), pages 709-721.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:193:y:2020:i:c:s0360544219324818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.