IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v204y2020ics0360544220310446.html
   My bibliography  Save this article

Conceptual design of small aircraft with hybrid-electric propulsion systems

Author

Listed:
  • Sziroczak, David
  • Jankovics, Istvan
  • Gal, Istvan
  • Rohacs, Daniel

Abstract

Stakeholders envision the introduction of electric and hybrid-electric aircraft into operation by 2035. First developments of such aircraft have demonstrated that the existing technologies do not allow realization of hybrid-electric aircraft matching the performance of traditional aircraft with the same load factors. The major challenge of future hybrid-electric aircraft development is the considerable improvement of the energetic efficiencies. This paper evaluates the (i) problems and barriers (ii) emerging and required future technologies of effective hybrid-electric propulsion systems and (iii) adaptation of the aircraft conceptual design process for the development of hybrid-electric aircraft. The developed methodology is applied to the conceptual design of a small aircraft with hybrid-electric propulsion system. The results demonstrate that the adapted conceptual design methods with (i) constrains on mass fraction adapted to new technologies and solutions, (ii) constraints defined for energy fractions for flight mission legs, (iii) considering radically new elements and technologies in aircraft design and (iv) developing unconventional aircraft, aircraft operations may allow the development of small hybrid-electric aircraft with acceptable performance.

Suggested Citation

  • Sziroczak, David & Jankovics, Istvan & Gal, Istvan & Rohacs, Daniel, 2020. "Conceptual design of small aircraft with hybrid-electric propulsion systems," Energy, Elsevier, vol. 204(C).
  • Handle: RePEc:eee:energy:v:204:y:2020:i:c:s0360544220310446
    DOI: 10.1016/j.energy.2020.117937
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220310446
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117937?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Markus Henke & Gerrit Narjes & Jan Hoffmann & Constantin Wohlers & Stefan Urbanek & Christian Heister & Jörn Steinbrink & Wolf-Rüdiger Canders & Bernd Ponick, 2018. "Challenges and Opportunities of Very Light High-Performance Electric Drives for Aviation," Energies, MDPI, vol. 11(2), pages 1-25, February.
    2. Horbach, Jens & Rammer, Christian & Rennings, Klaus, 2012. "Determinants of eco-innovations by type of environmental impact — The role of regulatory push/pull, technology push and market pull," Ecological Economics, Elsevier, vol. 78(C), pages 112-122.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rohacs, J. & Kale, U. & Rohacs, D., 2022. "Radically new solutions for reducing the energy use by future aircraft and their operations," Energy, Elsevier, vol. 239(PE).
    2. Wang, Tao & Zhang, Yu & Yin, Zhao & Qiu, Liang & Hua, Yang & Zhang, Xian-wen & Qian, Ye-jian, 2023. "Decoupling control scheme optimization and energy analysis for a triaxial gas turbine based on the variable power offtakes/inputs," Energy, Elsevier, vol. 262(PB).
    3. Zhang, Jinning & Roumeliotis, Ioannis & Zolotas, Argyrios, 2022. "Model-based fully coupled propulsion-aerodynamics optimization for hybrid electric aircraft energy management strategy," Energy, Elsevier, vol. 245(C).
    4. Khaoula Derbel & Károly Beneda, 2020. "Sliding Mode Control for Micro Turbojet Engine Using Turbofan Power Ratio as Control Law," Energies, MDPI, vol. 13(18), pages 1-23, September.
    5. Wang, Weida & Chen, Yincong & Yang, Chao & Li, Ying & Xu, Bin & Xiang, Changle, 2022. "An enhanced hypotrochoid spiral optimization algorithm based intertwined optimal sizing and control strategy of a hybrid electric air-ground vehicle," Energy, Elsevier, vol. 257(C).
    6. Bravo, Guillem Moreno & Praliyev, Nurgeldy & Veress, Árpád, 2021. "Performance analysis of hybrid electric and distributed propulsion system applied on a light aircraft," Energy, Elsevier, vol. 214(C).
    7. Zhang, Zhen & Zhang, Tiezhu & Hong, Jichao & Zhang, Hongxin & Yang, Jian & Jia, Qingxiao, 2023. "Double deep Q-network guided energy management strategy of a novel electric-hydraulic hybrid electric vehicle," Energy, Elsevier, vol. 269(C).
    8. Hashemi, Seyed Reza & Mahajan, Ajay Mohan & Farhad, Siamak, 2021. "Online estimation of battery model parameters and state of health in electric and hybrid aircraft application," Energy, Elsevier, vol. 229(C).
    9. Wang, Tao & Zhang, Yu & Yin, Zhao & Zhang, Hua-liang & Qian, Ye-jian, 2023. "Energy analysis and control scheme optimizations for a recuperated gas turbine with variable power offtakes/inputs," Energy, Elsevier, vol. 285(C).
    10. Zhang, Haonan & Duan, Buren & Wu, Lizhi & Hua, Zuohao & Bao, Zijing & Guo, Ning & Ye, Yinghua & Galfetti, Luciano & DeLuca, Luigi T. & Shen, Ruiqi, 2021. "Actualization of an efficient throttleable laser propulsion mode," Energy, Elsevier, vol. 221(C).
    11. Wei, Zhiyuan & Zhang, Shuguang & Jafari, Soheil & Nikolaidis, Theoklis, 2022. "Self-enhancing model-based control for active transient protection and thrust response improvement of gas turbine aero-engines," Energy, Elsevier, vol. 242(C).
    12. Duan, Buren & Zhang, Haonan & Hua, Zuohao & Wu, Lizhi & Bao, Zijing & Guo, Ning & Ye, Yinghua & Shen, Ruiqi, 2022. "Burning characteristics and combustion wave model of AP/AN-based laser-controlled solid propellant," Energy, Elsevier, vol. 253(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valeria Costantini & Francesco Crespi & Giovanni Marin & Elena Paglialunga, 2016. "Eco-innovation, sustainable supply chains and environmental performance in European industries," LEM Papers Series 2016/19, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    2. Febi Jensen & Hans Lööf & Andreas Stephan, 2020. "New ventures in Cleantech: Opportunities, capabilities and innovation outcomes," Business Strategy and the Environment, Wiley Blackwell, vol. 29(3), pages 902-917, March.
    3. Stojčić, Nebojša, 2021. "Social and private outcomes of green innovation incentives in European advancing economies," Technovation, Elsevier, vol. 104(C).
    4. Ru-Jen Lin & Rong-Huei Chen & Thao-Minh Ho, 2013. "Market Demand, Green Innovation, and Firm Performance: Evidence from Hybrid Vehicle Industry," Diversity, Technology, and Innovation for Operational Competitiveness: Proceedings of the 2013 International Conference on Technology Innovation and Industrial Management,, ToKnowPress.
    5. Caroline Danièle Mothe & Thuc Uyen Nguyen-Thi, 2017. "Persistent openness and environmental innovation: An empirical analysis of French manufacturing firms," Post-Print hal-01609129, HAL.
    6. Durán-Romero, Gemma & López, Ana M. & Beliaeva, Tatiana & Ferasso, Marcos & Garonne, Christophe & Jones, Paul, 2020. "Bridging the gap between circular economy and climate change mitigation policies through eco-innovations and Quintuple Helix Model," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    7. Ghisetti, Claudia, 2017. "Demand-pull and environmental innovations: Estimating the effects of innovative public procurement," Technological Forecasting and Social Change, Elsevier, vol. 125(C), pages 178-187.
    8. Ren, Shenggang & Hu, Yucai & Zheng, Jingjing & Wang, Yangjie, 2020. "Emissions trading and firm innovation: Evidence from a natural experiment in China," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    9. Michael Peneder & Spyros Arvanitis & Christian Rammer & Tobias Stucki & Martin Wörter, 2022. "Policy instruments and self-reported impacts of the adoption of energy saving technologies in the DACH region," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 49(2), pages 369-404, May.
    10. Magadán-Díaz, Marta & Sotiriadis, Marios & Rivas-García, Jesús, 2019. "Drivers of eco-innovation in the Spanish hospitality industry," MPRA Paper 94090, University Library of Munich, Germany.
    11. Giovanni Marin & Francesca Lotti, 2017. "Productivity effects of eco-innovations using data on eco-patents," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 26(1), pages 125-148.
    12. Krieger, Bastian & Zipperer, Vera, 2022. "Does green public procurement trigger environmental innovations?," Research Policy, Elsevier, vol. 51(6).
    13. Marin, Giovanni & Vona, Francesco, 2023. "Finance and the reallocation of scientific, engineering and mathematical talent," Research Policy, Elsevier, vol. 52(5).
    14. Joana Costa, 2021. "Carrots or Sticks: Which Policies Matter the Most in Sustainable Resource Management?," Resources, MDPI, vol. 10(2), pages 1-21, February.
    15. Filip Kutt & Michał Michna & Grzegorz Kostro, 2020. "Non-Salient Brushless Synchronous Generator Main Exciter Design for More Electric Aircraft," Energies, MDPI, vol. 13(11), pages 1-17, May.
    16. Kalantzis, Fotios & Revoltella, Debora, 2019. "How energy audits promote SMEs' energy efficiency investment," EIB Working Papers 2019/02, European Investment Bank (EIB).
    17. Konrad Johan Jensen & Morten Kjeld Ebbesen & Michael Rygaard Hansen, 2021. "Novel Concept for Electro-Hydrostatic Actuators for Motion Control of Hydraulic Manipulators," Energies, MDPI, vol. 14(20), pages 1-27, October.
    18. Jose García‐Quevedo & Elisenda Jové‐Llopis & Ester Martínez‐Ros, 2020. "Barriers to the circular economy in European small and medium‐sized firms," Business Strategy and the Environment, Wiley Blackwell, vol. 29(6), pages 2450-2464, September.
    19. Alessandra Colombelli & Jackie Krafft & Francesco Quatraro, 2015. "Eco-innovation and Firm Growth: Do Green Gazelles Run Faster? Microeconometric Evidence from a Sample of European Firms. WWWforEurope Working Paper No. 88," WIFO Studies, WIFO, number 57897.
    20. Justin Doran & Geraldine Ryan, 2016. "The Importance of the Diverse Drivers and Types of Environmental Innovation for Firm Performance," Business Strategy and the Environment, Wiley Blackwell, vol. 25(2), pages 102-119, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:204:y:2020:i:c:s0360544220310446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.