IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v140y2017ip2p1407-1416.html
   My bibliography  Save this article

Hybrid-electric propulsion integration in unmanned aircraft

Author

Listed:
  • Sliwinski, Jacob
  • Gardi, Alessandro
  • Marino, Matthew
  • Sabatini, Roberto

Abstract

Hybrid-Electric Propulsion Systems (HEPS) have emerged as a promising area of research in aerospace engineering as they combine the complementary advantages of internal combustion and electric propulsion technologies while limiting the environmental emissions. Despite the promising benefits, the insufficient energy densities and specific energies of electrical storage devices are major challenges as they induce severe weight and volume penalties. Significant opportunities are nonetheless emerging thanks to optimised propulsive profiles, energy harvesting techniques and more electric aircraft technologies. To support further research on hybrid electric aircraft, the aim of this study is to develop a HEPS retrofit design methodology for existing Remotely Piloted Aircraft Systems (RPAS). The implemented HEPS models use power state variables, allowing more accurate predictions of energy converter efficiency than with power-based approaches. Data from commercially available products is introduced and a case study is presented assuming a reference RPAS platform and performing parametric studies for traditional, electric and hybrid configurations. Range and endurance performances are investigated in depth and the most significant dependencies on design parameters are analysed. The results suggest that HEPS technology represents a viable trade-off solution in small-to-medium size RPAS, promoting the mitigation of noxious and greenhouse emissions while providing adequate range and endurance performance.

Suggested Citation

  • Sliwinski, Jacob & Gardi, Alessandro & Marino, Matthew & Sabatini, Roberto, 2017. "Hybrid-electric propulsion integration in unmanned aircraft," Energy, Elsevier, vol. 140(P2), pages 1407-1416.
  • Handle: RePEc:eee:energy:v:140:y:2017:i:p2:p:1407-1416
    DOI: 10.1016/j.energy.2017.05.183
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217309799
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.05.183?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Xian-Zhong & Hou, Zhong-Xi & Guo, Zheng & Chen, Xiao-Qian, 2015. "Reviews of methods to extract and store energy for solar-powered aircraft," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 96-108.
    2. Sharaf, Omar Z. & Orhan, Mehmet F., 2014. "An overview of fuel cell technology: Fundamentals and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 810-853.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji, Zhixing & Qin, Jiang & Cheng, Kunlin & Liu, He & Zhang, Silong & Dong, Peng, 2019. "Performance evaluation of a turbojet engine integrated with interstage turbine burner and solid oxide fuel cell," Energy, Elsevier, vol. 168(C), pages 702-711.
    2. Koruyucu, Elif, 2019. "Energy and exergy analysis at different hybridization factors for hybrid electric propulsion light utility helicopter engine," Energy, Elsevier, vol. 189(C).
    3. Massimo Cardone & Bonaventura Gargiulo & Enrico Fornaro, 2021. "Modelling and Experimental Validation of a Hybrid Electric Propulsion System for Light Aircraft and Unmanned Aerial Vehicles," Energies, MDPI, vol. 14(13), pages 1-16, July.
    4. Wang, Tao & Zhang, Yu & Yin, Zhao & Qiu, Liang & Hua, Yang & Zhang, Xian-wen & Qian, Ye-jian, 2023. "Decoupling control scheme optimization and energy analysis for a triaxial gas turbine based on the variable power offtakes/inputs," Energy, Elsevier, vol. 262(PB).
    5. Zhang, Jinning & Roumeliotis, Ioannis & Zolotas, Argyrios, 2022. "Model-based fully coupled propulsion-aerodynamics optimization for hybrid electric aircraft energy management strategy," Energy, Elsevier, vol. 245(C).
    6. Ranasinghe, Kavindu & Guan, Kai & Gardi, Alessandro & Sabatini, Roberto, 2019. "Review of advanced low-emission technologies for sustainable aviation," Energy, Elsevier, vol. 188(C).
    7. Zhang, Jinning & Roumeliotis, Ioannis & Zhang, Xin & Zolotas, Argyrios, 2023. "Techno-economic-environmental evaluation of aircraft propulsion electrification: Surrogate-based multi-mission optimal design approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    8. Burston, Martin & Ranasinghe, Kavindu & Gardi, Alessandro & Parezanović, Vladimir & Ajaj, Rafic & Sabatini, Roberto, 2022. "Design principles and digital control of advanced distributed propulsion systems," Energy, Elsevier, vol. 241(C).
    9. Bravo, Guillem Moreno & Praliyev, Nurgeldy & Veress, Árpád, 2021. "Performance analysis of hybrid electric and distributed propulsion system applied on a light aircraft," Energy, Elsevier, vol. 214(C).
    10. Ji, Zhixing & Qin, Jiang & Cheng, Kunlin & Guo, Fafu & Zhang, Silong & Zhou, Chaoying & Dong, Peng, 2020. "Determination of the safe operation zone for a turbine-less and solid oxide fuel cell hybrid electric jet engine on unmanned aerial vehicles," Energy, Elsevier, vol. 202(C).
    11. Zaid O. Alrayes & Mohamed Gadalla, 2021. "Development of a Flexible Framework Multi-Design Optimization Scheme for a Hand Launched Fuel Cell-Powered UAV," Energies, MDPI, vol. 14(10), pages 1-27, May.
    12. Tao Lei & Zhihao Min & Qinxiang Gao & Lina Song & Xingyu Zhang & Xiaobin Zhang, 2022. "The Architecture Optimization and Energy Management Technology of Aircraft Power Systems: A Review and Future Trends," Energies, MDPI, vol. 15(11), pages 1-37, June.
    13. Zhang, Haonan & Duan, Buren & Wu, Lizhi & Hua, Zuohao & Bao, Zijing & Guo, Ning & Ye, Yinghua & Galfetti, Luciano & DeLuca, Luigi T. & Shen, Ruiqi, 2021. "Actualization of an efficient throttleable laser propulsion mode," Energy, Elsevier, vol. 221(C).
    14. Duan, Buren & Zhang, Haonan & Hua, Zuohao & Wu, Lizhi & Bao, Zijing & Guo, Ning & Ye, Yinghua & Shen, Ruiqi, 2022. "Burning characteristics and combustion wave model of AP/AN-based laser-controlled solid propellant," Energy, Elsevier, vol. 253(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Chen & Li, Baozhu & Zhang, Lu & Han, Yaru & Wu, Xiaoyu, 2023. "Novel optimal structure design and testing of air-cooled open-cathode proton exchange membrane fuel cell," Renewable Energy, Elsevier, vol. 215(C).
    2. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    3. Peng, Fei & Zhao, Yuanzhe & Li, Xiaopeng & Liu, Zhixiang & Chen, Weirong & Liu, Yang & Zhou, Donghua, 2017. "Development of master-slave energy management strategy based on fuzzy logic hysteresis state machine and differential power processing compensation for a PEMFC-LIB-SC hybrid tramway," Applied Energy, Elsevier, vol. 206(C), pages 346-363.
    4. Jae Yun Jeong & Inje Kang & Ki Seok Choi & Byeong-Hee Lee, 2018. "Network Analysis on Green Technology in National Research and Development Projects in Korea," Sustainability, MDPI, vol. 10(4), pages 1-12, April.
    5. Liao, Shuxin & Qiu, Diankai & Yi, Peiyun & Peng, Linfa & Lai, Xinmin, 2022. "Modeling of a novel cathode flow field design with optimized sub-channels to improve drainage for proton exchange membrane fuel cells," Energy, Elsevier, vol. 261(PB).
    6. Zhang, Chaoyu & Zhang, Chengming & Li, Liyi & Guo, Qingbo, 2021. "Parameter analysis of power system for solar-powered unmanned aerial vehicle," Applied Energy, Elsevier, vol. 295(C).
    7. Lv, Xiuqing & Chen, Huili & Zhou, Wei & Li, Si-Dian & Cheng, Fangqin & Shao, Zongping, 2022. "SrCo0.4Fe0.4Zr0.1Y0.1O3-δ, A new CO2 tolerant cathode for proton-conducting solid oxide fuel cells," Renewable Energy, Elsevier, vol. 185(C), pages 8-16.
    8. Kinnon, Michael Mac & Razeghi, Ghazal & Samuelsen, Scott, 2021. "The role of fuel cells in port microgrids to support sustainable goods movement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    9. Mehrpooya, Mehdi & Ansarinasab, Hojat & Mousavi, Seyed Ali, 2021. "Life cycle assessment and exergoeconomic analysis of the multi-generation system based on fuel cell for methanol, power, and heat production," Renewable Energy, Elsevier, vol. 172(C), pages 1314-1332.
    10. Lin, Jui-Yen & Shih, Yu-Jen & Chen, Po-Yen & Huang, Yao-Hui, 2016. "Precipitation recovery of boron from aqueous solution by chemical oxo-precipitation at room temperature," Applied Energy, Elsevier, vol. 164(C), pages 1052-1058.
    11. Wang, Chu & Li, Zhongliang & Outbib, Rachid & Dou, Manfeng & Zhao, Dongdong, 2022. "Symbolic deep learning based prognostics for dynamic operating proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 305(C).
    12. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    13. Xuexia Zhang & Zixuan Yu & Weirong Chen, 2019. "Life Prediction Based on D-S ELM for PEMFC," Energies, MDPI, vol. 12(19), pages 1-15, September.
    14. Bao, Zhiming & Niu, Zhiqiang & Jiao, Kui, 2020. "Gas distribution and droplet removal of metal foam flow field for proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 280(C).
    15. Jiang, Hongliang & Xu, Liangfei & Li, Jianqiu & Hu, Zunyan & Ouyang, Minggao, 2019. "Energy management and component sizing for a fuel cell/battery/supercapacitor hybrid powertrain based on two-dimensional optimization algorithms," Energy, Elsevier, vol. 177(C), pages 386-396.
    16. Wilberforce, Tabbi & El Hassan, Zaki & Ogungbemi, Emmanuel & Ijaodola, O. & Khatib, F.N. & Durrant, A. & Thompson, J. & Baroutaji, A. & Olabi, A.G., 2019. "A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 236-260.
    17. Collins, Jeffrey M. & McLarty, Dustin, 2020. "All-electric commercial aviation with solid oxide fuel cell-gas turbine-battery hybrids," Applied Energy, Elsevier, vol. 265(C).
    18. Teixeira, Fátima C. & Teixeira, António P.S. & Rangel, C.M., 2022. "New proton conductive membranes of indazole- and condensed pyrazolebisphosphonic acid-Nafion membranes for PEMFC," Renewable Energy, Elsevier, vol. 196(C), pages 1187-1196.
    19. Sagar Roy & Smruti Ragunath, 2018. "Emerging Membrane Technologies for Water and Energy Sustainability: Future Prospects, Constraints and Challenges," Energies, MDPI, vol. 11(11), pages 1-32, November.
    20. Chou, Chang-Chen & Hsieh, Ching-Hsuan & Chen, Bing-Hung, 2015. "Hydrogen generation from catalytic hydrolysis of sodium borohydride using bimetallic Ni–Co nanoparticles on reduced graphene oxide as catalysts," Energy, Elsevier, vol. 90(P2), pages 1973-1982.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:140:y:2017:i:p2:p:1407-1416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.