IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v127y2017icp318-327.html
   My bibliography  Save this article

An adaptive model predictive controller for a novel battery-powered anti-idling system of service vehicles

Author

Listed:
  • Huang, Yanjun
  • Fard, Soheil Mohagheghi
  • Khazraee, Milad
  • Wang, Hong
  • Khajepour, Amir

Abstract

This paper presents an anti-idling regenerative auxiliary power system for service vehicles. The energy storage system in the regenerative auxiliary power system is able to electrify the auxiliary systems so as to achieve anti-idling. Service vehicles (e.g. delivery trucks or public buses) generally have predetermined routes, thus it is feasible and profitable to utilize a model predictive control strategy to improve the fuel economy of the new powertrain. However, the mass/load of such service vehicles is time-varying during a drive cycle. Therefore, an adaptive model predictive controller should be designed to account for this variation. Although the drive cycle is preset, it would experience uncertainties or disturbances caused by traffic or weather conditions in real situations. To deal with this problem, a large step size prediction method is used in the adaptive model predictive algorithm to enhance its robustness. The proposed algorithm is compared to a prescient model predictive controller in different scenarios to demonstrate its applicability and optimality (more than 7% fuel savings). The proposed approach is independent of the powertrain topology such that it is able to be directly extended to other types of hybrid electric vehicles.

Suggested Citation

  • Huang, Yanjun & Fard, Soheil Mohagheghi & Khazraee, Milad & Wang, Hong & Khajepour, Amir, 2017. "An adaptive model predictive controller for a novel battery-powered anti-idling system of service vehicles," Energy, Elsevier, vol. 127(C), pages 318-327.
  • Handle: RePEc:eee:energy:v:127:y:2017:i:c:p:318-327
    DOI: 10.1016/j.energy.2017.03.119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421730511X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.03.119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hovgaard, Tobias Gybel & Larsen, Lars F.S. & Edlund, Kristian & Jørgensen, John Bagterp, 2012. "Model predictive control technologies for efficient and flexible power consumption in refrigeration systems," Energy, Elsevier, vol. 44(1), pages 105-116.
    2. Lutsey, Nicholas & Brodrick, Christie-Joy & Lipman, Timothy, 2007. "Analysis of potential fuel consumption and emissions reductions from fuel cell auxiliary power units (APUs) in long-haul trucks," Energy, Elsevier, vol. 32(12), pages 2428-2438.
    3. Yu, Huilong & Tarsitano, Davide & Hu, Xiaosong & Cheli, Federico, 2016. "Real time energy management strategy for a fast charging electric urban bus powered by hybrid energy storage system," Energy, Elsevier, vol. 112(C), pages 322-331.
    4. Wang, Hong & Huang, Yanjun & Khajepour, Amir & Song, Qiang, 2016. "Model predictive control-based energy management strategy for a series hybrid electric tracked vehicle," Applied Energy, Elsevier, vol. 182(C), pages 105-114.
    5. Hao, Han & Wang, Sinan & Liu, Zongwei & Zhao, Fuquan, 2016. "The impact of stepped fuel economy targets on automaker's light-weighting strategy: The China case," Energy, Elsevier, vol. 94(C), pages 755-765.
    6. Huang, Yanjun & Khajepour, Amir & Wang, Hong, 2016. "A predictive power management controller for service vehicle anti-idling systems without a priori information," Applied Energy, Elsevier, vol. 182(C), pages 548-557.
    7. Li, Liang & You, Sixiong & Yang, Chao & Yan, Bingjie & Song, Jian & Chen, Zheng, 2016. "Driving-behavior-aware stochastic model predictive control for plug-in hybrid electric buses," Applied Energy, Elsevier, vol. 162(C), pages 868-879.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Sangjo, 2021. "A new performance adaptation method for aero gas turbine engines based on large amounts of measured data," Energy, Elsevier, vol. 221(C).
    2. Fard, Soheil Mohagheghi & Huang, Yanjun & Khazraee, Milad & Khajepour, Amir, 2017. "A novel anti-idling system for service vehicles," Energy, Elsevier, vol. 127(C), pages 650-659.
    3. Nitin S. Solke & Pritesh Shah & Ravi Sekhar & T. P. Singh, 2022. "Machine Learning-Based Predictive Modeling and Control of Lean Manufacturing in Automotive Parts Manufacturing Industry," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 23(1), pages 89-112, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
    2. Chen, Ruihu & Yang, Chao & Ma, Yue & Wang, Weida & Wang, Muyao & Du, Xuelong, 2022. "Online learning predictive power coordinated control strategy for off-road hybrid electric vehicles considering the dynamic response of engine generator set," Applied Energy, Elsevier, vol. 323(C).
    3. Huang, Yanjun & Khajepour, Amir & Bagheri, Farshid & Bahrami, Majid, 2016. "Optimal energy-efficient predictive controllers in automotive air-conditioning/refrigeration systems," Applied Energy, Elsevier, vol. 184(C), pages 605-618.
    4. Bizon, Nicu, 2017. "Energy optimization of fuel cell system by using global extremum seeking algorithm," Applied Energy, Elsevier, vol. 206(C), pages 458-474.
    5. Liu, Hui & Li, Xunming & Wang, Weida & Han, Lijin & Xiang, Changle, 2018. "Markov velocity predictor and radial basis function neural network-based real-time energy management strategy for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 152(C), pages 427-444.
    6. Huang, Yanjun & Wang, Hong & Khajepour, Amir & Li, Bin & Ji, Jie & Zhao, Kegang & Hu, Chuan, 2018. "A review of power management strategies and component sizing methods for hybrid vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 132-144.
    7. Liu, Hanwu & Lei, Yulong & Fu, Yao & Li, Xingzhong, 2022. "A novel hybrid-point-line energy management strategy based on multi-objective optimization for range-extended electric vehicle," Energy, Elsevier, vol. 247(C).
    8. Zhuang, Weichao & Li (Eben), Shengbo & Zhang, Xiaowu & Kum, Dongsuk & Song, Ziyou & Yin, Guodong & Ju, Fei, 2020. "A survey of powertrain configuration studies on hybrid electric vehicles," Applied Energy, Elsevier, vol. 262(C).
    9. Yang, Chao & Li, Liang & You, Sixiong & Yan, Bingjie & Du, Xian, 2017. "Cloud computing-based energy optimization control framework for plug-in hybrid electric bus," Energy, Elsevier, vol. 125(C), pages 11-26.
    10. Fard, Soheil Mohagheghi & Huang, Yanjun & Khazraee, Milad & Khajepour, Amir, 2017. "A novel anti-idling system for service vehicles," Energy, Elsevier, vol. 127(C), pages 650-659.
    11. Rezaei, A. & Burl, J.B. & Solouk, A. & Zhou, B. & Rezaei, M. & Shahbakhti, M., 2017. "Catch energy saving opportunity (CESO), an instantaneous optimal energy management strategy for series hybrid electric vehicles," Applied Energy, Elsevier, vol. 208(C), pages 655-665.
    12. Qin, Zhaobo & Luo, Yugong & Zhuang, Weichao & Pan, Ziheng & Li, Keqiang & Peng, Huei, 2018. "Simultaneous optimization of topology, control and size for multi-mode hybrid tracked vehicles," Applied Energy, Elsevier, vol. 212(C), pages 1627-1641.
    13. Huang, Yanjun & Khajepour, Amir & Wang, Hong, 2016. "A predictive power management controller for service vehicle anti-idling systems without a priori information," Applied Energy, Elsevier, vol. 182(C), pages 548-557.
    14. Ahmed M. Ali & Dirk Söffker, 2018. "Towards Optimal Power Management of Hybrid Electric Vehicles in Real-Time: A Review on Methods, Challenges, and State-Of-The-Art Solutions," Energies, MDPI, vol. 11(3), pages 1-24, February.
    15. Shi, Dehua & Liu, Sheng & Cai, Yingfeng & Wang, Shaohua & Li, Haoran & Chen, Long, 2021. "Pontryagin’s minimum principle based fuzzy adaptive energy management for hybrid electric vehicle using real-time traffic information," Applied Energy, Elsevier, vol. 286(C).
    16. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    17. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    18. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    19. Biegel, Benjamin & Westenholz, Mikkel & Hansen, Lars Henrik & Stoustrup, Jakob & Andersen, Palle & Harbo, Silas, 2014. "Integration of flexible consumers in the ancillary service markets," Energy, Elsevier, vol. 67(C), pages 479-489.
    20. Pedrayes, Joaquín F. & Melero, Manuel G. & Cano, Jose M. & Norniella, Joaquín G. & Duque, Salvador B. & Rojas, Carlos H. & Orcajo, Gonzalo A., 2021. "Lambert W function based closed-form expressions of supercapacitor electrical variables in constant power applications," Energy, Elsevier, vol. 218(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:127:y:2017:i:c:p:318-327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.