IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v160y2018icp625-634.html
   My bibliography  Save this article

A novel coolant cooling method for enhancing the performance of the gas turbine combined cycle

Author

Listed:
  • Moon, Seong Won
  • Kwon, Hyun Min
  • Kim, Tong Seop
  • Kang, Do Won
  • Sohn, Jeong Lak

Abstract

The turbine inlet temperature (TIT) has a significant effect on the performance of gas turbines, and enhanced cooling methods are being applied to the latest gas turbines to increase this temperature. The coolant pre-cooling (CPC) is also used to improve the cooling performance. In this study, coolant inter-cooling (CIC) is proposed to reduce the coolant temperature and improve the gas turbine performance further. The air required for turbine cooling is extracted from the middle of the compressor, cooled, and pressurized by a separate compressor. This decreases both the coolant temperature and the power needed to compress it. The effect of CIC on the performance of a combined cycle power plant was analyzed in comparison with the conventional CPC method using an H-class gas turbine. A heat recovery system was considered to collect the heat wasted in the coolant cooling process and generates additional steam in the bottoming cycle. Various locations of the water source for the heat recovery were compared, and the optimal ones were selected. The proposed method enables higher power output and efficiency in a combined cycle power plant than the CPC method.

Suggested Citation

  • Moon, Seong Won & Kwon, Hyun Min & Kim, Tong Seop & Kang, Do Won & Sohn, Jeong Lak, 2018. "A novel coolant cooling method for enhancing the performance of the gas turbine combined cycle," Energy, Elsevier, vol. 160(C), pages 625-634.
  • Handle: RePEc:eee:energy:v:160:y:2018:i:c:p:625-634
    DOI: 10.1016/j.energy.2018.07.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218313318
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.07.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kang, Do Won & Kim, Tong Seop, 2018. "Model-based performance diagnostics of heavy-duty gas turbines using compressor map adaptation," Applied Energy, Elsevier, vol. 212(C), pages 1345-1359.
    2. Sciubba, Enrico, 2015. "Air-cooled gas turbine cycles – Part 1: An analytical method for the preliminary assessment of blade cooling flow rates," Energy, Elsevier, vol. 83(C), pages 104-114.
    3. Kang, Do Won & Jang, Hyuck Jun & Kim, Tong Seop, 2014. "Using compressor discharge air bypass to enhance power generation of a steam-injected gas turbine for combined heat and power," Energy, Elsevier, vol. 76(C), pages 390-399.
    4. Sahu, Mithilesh Kumar & Sanjay,, 2017. "Comparative exergoeconomic analysis of basic and reheat gas turbine with air film blade cooling," Energy, Elsevier, vol. 132(C), pages 160-170.
    5. Singh, Omendra Kumar, 2016. "Performance enhancement of combined cycle power plant using inlet air cooling by exhaust heat operated ammonia-water absorption refrigeration system," Applied Energy, Elsevier, vol. 180(C), pages 867-879.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hye-Rim Kim & Tong-Seop Kim, 2021. "Optimization of Sizing and Operation Strategy of Distributed Generation System Based on a Gas Turbine and Renewable Energy," Energies, MDPI, vol. 14(24), pages 1-28, December.
    2. Alexander Genbach & Hristo Beloev & David Bondartsev, 2021. "Comparison of Cooling Systems in Power Plant Units," Energies, MDPI, vol. 14(19), pages 1-14, October.
    3. Giugno, Andrea & Sorce, Alessandro & Cuneo, Alessandra & Barberis, Stefano, 2021. "Effects of market and climatic conditions over a gas turbine combined cycle integrated with a Heat Pump for inlet cooling," Applied Energy, Elsevier, vol. 290(C).
    4. Qian, Xiaoru & Yan, Peigang & Wang, Xiangfeng & Han, Wanjin, 2023. "Effect of thermal barrier coatings and integrated cooling on the conjugate heat transfer and thermal stress distribution of nickel-based superalloy turbine vanes," Energy, Elsevier, vol. 277(C).
    5. Kim, Min Jae & Kim, Tong Seop & Flores, Robert J. & Brouwer, Jack, 2020. "Neural-network-based optimization for economic dispatch of combined heat and power systems," Applied Energy, Elsevier, vol. 265(C).
    6. Kim, Min Jae & Kim, Tong Seop, 2019. "Integration of compressed air energy storage and gas turbine to improve the ramp rate," Applied Energy, Elsevier, vol. 247(C), pages 363-373.
    7. Young-Kwang Park & Seong-Won Moon & Tong-Seop Kim, 2021. "Advanced Control to Improve the Ramp-Rate of a Gas Turbine: Optimization of Control Schedule," Energies, MDPI, vol. 14(23), pages 1-23, December.
    8. Park, Yeseul & Choi, Minsung & Choi, Gyungmin, 2023. "Thermodynamic performance study of large-scale industrial gas turbine with methane/ammonia/hydrogen blended fuels," Energy, Elsevier, vol. 282(C).
    9. Mahdavi, Navid & Khalilarya, Shahram, 2019. "Comprehensive thermodynamic investigation of three cogeneration systems including GT-HRSG/RORC as the base system, intermediate system and solar hybridized system," Energy, Elsevier, vol. 181(C), pages 1252-1272.
    10. Park, Yeseul & Choi, Minsung & Kim, Dongmin & Lee, Joongsung & Choi, Gyungmin, 2021. "Performance analysis of large-scale industrial gas turbine considering stable combustor operation using novel blended fuel," Energy, Elsevier, vol. 236(C).
    11. Lu, Yuming & Fei, Hongzi & Yang, Hao & Zhang, Hai, 2024. "Study of the cooling characteristics of organic solutions by injection," Energy, Elsevier, vol. 288(C).
    12. Seong Won Moon & Tong Seop Kim, 2020. "Advanced Gas Turbine Control Logic Using Black Box Models for Enhancing Operational Flexibility and Stability," Energies, MDPI, vol. 13(21), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sahu, Mithilesh Kumar & Sanjay,, 2017. "Comparative exergoeconomics of power utilities: Air-cooled gas turbine cycle and combined cycle configurations," Energy, Elsevier, vol. 139(C), pages 42-51.
    2. Kim, Jeong Ho & Kim, Tong Seop, 2019. "A new approach to generate turbine map data in the sub-idle operation regime of gas turbines," Energy, Elsevier, vol. 173(C), pages 772-784.
    3. Taner, Tolga & Sivrioglu, Mecit, 2015. "Energy–exergy analysis and optimisation of a model sugar factory in Turkey," Energy, Elsevier, vol. 93(P1), pages 641-654.
    4. Cai, Jianhui & Fei, Jiaming & Li, Liguang & Fei, Cheng & Maghsoudniazi, Mohammadhadi & Su, Zhanguo, 2023. "Multicriteria study of geothermal trigeneration systems with configurations of hybrid vapor compression refrigeration and Kalina cycles for sport arena application," Renewable Energy, Elsevier, vol. 219(P1).
    5. Maheshwari, Mayank & Singh, Onkar, 2020. "Thermo-economic analysis of combined cycle configurations with intercooling and reheating," Energy, Elsevier, vol. 205(C).
    6. Zhu, Lin & He, Yangdong & Li, Luling & Lv, Liping & He, Jingling, 2018. "Thermodynamic assessment of SNG and power polygeneration with the goal of zero CO2 emission," Energy, Elsevier, vol. 149(C), pages 34-46.
    7. Gu, Chun-wei & Wang, Hao & Ji, Xing-xing & Li, Xue-song, 2016. "Development and application of a thermodynamic-cycle performance analysis method of a three-shaft gas turbine," Energy, Elsevier, vol. 112(C), pages 307-321.
    8. Sogut, M. Ziya, 2020. "Assessment of small scale turbojet engine considering environmental and thermodynamics performance for flight processes," Energy, Elsevier, vol. 200(C).
    9. Linhai Zhu & Jinfu Liu & Yujia Ma & Weixing Zhou & Daren Yu, 2020. "A Coupling Diagnosis Method for Sensor Faults Detection, Isolation and Estimation of Gas Turbine Engines," Energies, MDPI, vol. 13(18), pages 1-19, September.
    10. Bai, Mingliang & Yang, Xusheng & Liu, Jinfu & Liu, Jiao & Yu, Daren, 2021. "Convolutional neural network-based deep transfer learning for fault detection of gas turbine combustion chambers," Applied Energy, Elsevier, vol. 302(C).
    11. Kim, Min Jae & Kim, Tong Seop & Flores, Robert J. & Brouwer, Jack, 2020. "Neural-network-based optimization for economic dispatch of combined heat and power systems," Applied Energy, Elsevier, vol. 265(C).
    12. Kazemiani-Najafabadi, Parisa & Amiri Rad, Ehsan, 2020. "Optimization of an improved power cycle for geothermal applications in Iran," Energy, Elsevier, vol. 209(C).
    13. Saghafifar, Mohammad & Gadalla, Mohamed, 2017. "Thermo-economic optimization of hybrid solar Maisotsenko bottoming cycles using heliostat field collector: Comparative analysis," Applied Energy, Elsevier, vol. 190(C), pages 686-702.
    14. Taner, Tolga & Sivrioglu, Mecit, 2017. "A techno-economic & cost analysis of a turbine power plant: A case study for sugar plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 722-730.
    15. Sahu, Mithilesh Kumar & Sanjay,, 2017. "Thermoeconomic investigation of power utilities: Intercooled recuperated gas turbine cycle featuring cooled turbine blades," Energy, Elsevier, vol. 138(C), pages 490-499.
    16. Farzad Hamrang & Afshar Shokri & S. M. Seyed Mahmoudi & Biuk Ehghaghi & Marc A. Rosen, 2020. "Performance Analysis of a New Electricity and Freshwater Production System Based on an Integrated Gasification Combined Cycle and Multi-Effect Desalination," Sustainability, MDPI, vol. 12(19), pages 1-29, September.
    17. Kwon, Hyun Min & Moon, Seong Won & Kim, Tong Seop & Kang, Do Won, 2020. "Performance enhancement of the gas turbine combined cycle by simultaneous reheating, recuperation, and coolant inter-cooling," Energy, Elsevier, vol. 207(C).
    18. Isa, Normazlina Mat & Tan, Chee Wei & Yatim, A.H.M., 2018. "A comprehensive review of cogeneration system in a microgrid: A perspective from architecture and operating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2236-2263.
    19. Shi, Lingfeng & Tian, Hua & Shu, Gequn, 2020. "Multi-mode analysis of a CO2-based combined refrigeration and power cycle for engine waste heat recovery," Applied Energy, Elsevier, vol. 264(C).
    20. Tucker, Swatara & Indrawan, Natarianto & Shadle, Lawrence J. & Harun, Nor Farida & Tucker, David, 2024. "Performance degradation in an advanced power system by analyzing process dynamics," Applied Energy, Elsevier, vol. 369(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:160:y:2018:i:c:p:625-634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.