IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p15450-d979329.html
   My bibliography  Save this article

Analytical Design of Synchrophasor Communication Networks with Resiliency Analysis Framework for Smart Grid

Author

Listed:
  • Amitkumar V. Jha

    (School of Electronics Engineering, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India)

  • Bhargav Appasani

    (School of Electronics Engineering, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India)

  • Deepak Kumar Gupta

    (School of Electrical Engineering, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India)

  • Taha Selim Ustun

    (Fukushima Renewable Energy Institute, AIST (FREA), Koriyama 963-0298, Japan)

Abstract

The advent of synchrophasor technology has completely revolutionized the modern smart grid, enabling futuristic wide-area monitoring protection and control. The Synchrophasor Communication Network (SCN) is a backbone that supports communication of synchrophasor data among Phasor Measurement Units (PMUs) and Phasor Data Concentrators (PDCs). The operator at the control center can visualize the health of the smart grid using synchrophasor data aggregated at PDCs from several PMUs. Since the core of the SCN is the existing IP network as an underlying communication infrastructure, the synchrophasor data is subjected to attacks that can compromise its security. The attacks, such as denial-of-service (DoS), can result in degradation of performance and even can disrupt the entire operation of the smart grid, if not controlled. Thus, a resilient SCN is a pertinent requirement in which the system continues to operate with accepted levels of performance even in response to the DoS. This article endeavors to propose a comprehensive resiliency framework for the SCN with enhanced resiliency metrics based on hardware reliability and data reliability. The proposed framework is deployed for a SCN pertaining to a practical power grid in India for its resiliency analysis. The proposed work can be regarded as a significant contribution to smart grid technology, as it provides a framework for resiliency analysis covering different aspects such as hardware reliability, data reliability, and parameters validation using the QualNet network simulator. Nevertheless, an analytical design of the hybrid SCN proposed in this work can even be extended to other topological designs of SCN.

Suggested Citation

  • Amitkumar V. Jha & Bhargav Appasani & Deepak Kumar Gupta & Taha Selim Ustun, 2022. "Analytical Design of Synchrophasor Communication Networks with Resiliency Analysis Framework for Smart Grid," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15450-:d:979329
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/15450/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/15450/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hosseini, Seyedmohsen & Barker, Kash & Ramirez-Marquez, Jose E., 2016. "A review of definitions and measures of system resilience," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 47-61.
    2. Tabar, Vahid Sohrabi & Ghassemzadeh, Saeid & Tohidi, Sajjad, 2021. "Increasing resiliency against information vulnerability of renewable resources in the operation of smart multi-area microgrid," Energy, Elsevier, vol. 220(C).
    3. Hassan Haes Alhelou & Mohamad Esmail Hamedani-Golshan & Takawira Cuthbert Njenda & Pierluigi Siano, 2019. "A Survey on Power System Blackout and Cascading Events: Research Motivations and Challenges," Energies, MDPI, vol. 12(4), pages 1-28, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicholas B. Rajkovich & Yasmein Okour, 2019. "Climate Change Resilience Strategies for the Building Sector: Examining Existing Domains of Resilience Utilized by Design Professionals," Sustainability, MDPI, vol. 11(10), pages 1-15, May.
    2. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Fauzan Hanif Jufri & Jun-Sung Kim & Jaesung Jung, 2017. "Analysis of Determinants of the Impact and the Grid Capability to Evaluate and Improve Grid Resilience from Extreme Weather Event," Energies, MDPI, vol. 10(11), pages 1-17, November.
    4. Bucar, Raif C.B. & Hayeri, Yeganeh M., 2020. "Quantitative assessment of the impacts of disruptive precipitation on surface transportation," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    5. Chen, Chao & Yang, Ming & Reniers, Genserik, 2021. "A dynamic stochastic methodology for quantifying HAZMAT storage resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Milan Janić, 2018. "Modelling the resilience of rail passenger transport networks affected by large-scale disruptive events: the case of HSR (high speed rail)," Transportation, Springer, vol. 45(4), pages 1101-1137, July.
    7. Yang, Bofan & Zhang, Lin & Zhang, Bo & Xiang, Yang & An, Lei & Wang, Wenfeng, 2022. "Complex equipment system resilience: Composition, measurement and element analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    8. Hans Pasman & Kedar Kottawar & Prerna Jain, 2020. "Resilience of Process Plant: What, Why, and How Resilience Can Improve Safety and Sustainability," Sustainability, MDPI, vol. 12(15), pages 1-21, July.
    9. Zobel, Christopher W. & Baghersad, Milad, 2020. "Analytically comparing disaster resilience across multiple dimensions," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    10. Zeng, Zhiguo & Fang, Yi-Ping & Zhai, Qingqing & Du, Shijia, 2021. "A Markov reward process-based framework for resilience analysis of multistate energy systems under the threat of extreme events," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    11. Liang, Zhenglin & Li, Yan-Fu, 2023. "Holistic Resilience and Reliability Measures for Cellular Telecommunication Networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    12. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    13. Gianluca Fulli & Marcelo Masera & Catalin Felix Covrig & Francesco Profumo & Ettore Bompard & Tao Huang, 2017. "The EU Electricity Security Decision-Analytic Framework: Status and Perspective Developments," Energies, MDPI, vol. 10(4), pages 1-20, March.
    14. Aníbal Antonio Prada Hurtado & Eduardo Martinez Carrasco & Maria Teresa Villén Martínez & Jose Saldana, 2022. "Application of IIA Method and Virtual Bus Theory for Backup Protection of a Zone Using PMU Data in a WAMPAC System," Energies, MDPI, vol. 15(9), pages 1-34, May.
    15. Zhaoming Yang & Qi Xiang & Yuxuan He & Shiliang Peng & Michael Havbro Faber & Enrico Zio & Lili Zuo & Huai Su & Jinjun Zhang, 2023. "Resilience of Natural Gas Pipeline System: A Review and Outlook," Energies, MDPI, vol. 16(17), pages 1-19, August.
    16. Mohamad Darayi & Kash Barker & Joost R. Santos, 2017. "Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network," Networks and Spatial Economics, Springer, vol. 17(4), pages 1111-1136, December.
    17. Yusuke Toyoda, 2021. "Survey paper: achievements and perspectives of community resilience approaches to societal systems," Asia-Pacific Journal of Regional Science, Springer, vol. 5(3), pages 705-756, October.
    18. Khalilullah Mayar & David G. Carmichael & Xuesong Shen, 2022. "Resilience and Systems—A Review," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    19. Mohammed M. Al-Humaiqani & Sami G. Al-Ghamdi, 2023. "Assessing the Built Environment’s Reflectivity, Flexibility, Resourcefulness, and Rapidity Resilience Qualities against Climate Change Impacts from the Perspective of Different Stakeholders," Sustainability, MDPI, vol. 15(6), pages 1-30, March.
    20. Dui, Hongyan & Zhu, Yawen & Tao, Junyong, 2024. "Multi-phased resilience methodology of urban sewage treatment network based on the phase and node recovery importance in IoT," Reliability Engineering and System Safety, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15450-:d:979329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.