IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v120y2020ics1364032119308688.html
   My bibliography  Save this article

Smart home technologies in Europe: A critical review of concepts, benefits, risks and policies

Author

Listed:
  • Sovacool, Benjamin K.
  • Furszyfer Del Rio, Dylan D.

Abstract

Smart home technologies refer to devices that provide some degree of digitally connected, automated, or enhanced services to building occupants. Smart homes have become central in recent technology and policy discussions about energy efficiency, climate change, and the sustainability of buildings. Nevertheless, do they truly promote sustainability goals? In addition, what sorts of benefits, risks, and policies do they entail? Based on an extensive original dataset involving expert interviews, site visits to retailers, and a comprehensive review of the literature, this study critically examines the promise and peril of smart home technologies. Drawing on original data collected in the United Kingdom, which has access to European markets, the study first examines definitions of smart homes before offering a new classification involving 13 categories of smart technology covering 267 specific options commercially available from 113 companies. It situates these different technology classes alongside six degrees or levels of smartness, from the basic or traditional home to the fully automated and sentient home. It then elaborates on the 13 distinct benefits smart homes may offer alongside potential 17 risks and barriers, before introducing seven policy recommendations from the material. It lastly suggests three areas of future research on the demographics and behavior of actual smart home adopters, rethinking the duality of “control,” and looking beyond “homes” towards socio-technical systems, practices, and justice.

Suggested Citation

  • Sovacool, Benjamin K. & Furszyfer Del Rio, Dylan D., 2020. "Smart home technologies in Europe: A critical review of concepts, benefits, risks and policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
  • Handle: RePEc:eee:rensus:v:120:y:2020:i:c:s1364032119308688
    DOI: 10.1016/j.rser.2019.109663
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119308688
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109663?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Souza Dutra, Michael David & Anjos, Miguel F. & Le Digabel, Sébastien, 2019. "A general framework for customized transition to smart homes," Energy, Elsevier, vol. 189(C).
    2. Walzberg, Julien & Dandres, Thomas & Merveille, Nicolas & Cheriet, Mohamed & Samson, Réjean, 2019. "Assessing behavioural change with agent-based life cycle assessment: Application to smart homes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 365-376.
    3. Marikyan, Davit & Papagiannidis, Savvas & Alamanos, Eleftherios, 2019. "A systematic review of the smart home literature: A user perspective," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 139-154.
    4. Aune, Margrethe, 2007. "Energy comes home," Energy Policy, Elsevier, vol. 35(11), pages 5457-5465, November.
    5. Goulden, Murray & Spence, Alexa & Wardman, Jamie & Leygue, Caroline, 2018. "Differentiating ‘the user’ in DSR: Developing demand side response in advanced economies," Energy Policy, Elsevier, vol. 122(C), pages 176-185.
    6. Wilson, Charlie & Hargreaves, Tom & Hauxwell-Baldwin, Richard, 2017. "Benefits and risks of smart home technologies," Energy Policy, Elsevier, vol. 103(C), pages 72-83.
    7. Schill, Marie & Godefroit-Winkel, Delphine & Diallo, Mbaye Fall & Barbarossa, Camilla, 2019. "Consumers’ intentions to purchase smart home objects: Do environmental issues matter?," Ecological Economics, Elsevier, vol. 161(C), pages 176-185.
    8. Balta-Ozkan, Nazmiye & Davidson, Rosemary & Bicket, Martha & Whitmarsh, Lorraine, 2013. "Social barriers to the adoption of smart homes," Energy Policy, Elsevier, vol. 63(C), pages 363-374.
    9. Makhadmeh, Sharif Naser & Khader, Ahamad Tajudin & Al-Betar, Mohammed Azmi & Naim, Syibrah & Abasi, Ammar Kamal & Alyasseri, Zaid Abdi Alkareem, 2019. "Optimization methods for power scheduling problems in smart home: Survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    10. Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
    11. Watson, Matt, 2012. "How theories of practice can inform transition to a decarbonised transport system," Journal of Transport Geography, Elsevier, vol. 24(C), pages 488-496.
    12. Alexandra-Gwyn Paetz & Elisabeth Dütschke & Wolf Fichtner, 2012. "Smart Homes as a Means to Sustainable Energy Consumption: A Study of Consumer Perceptions," Journal of Consumer Policy, Springer, vol. 35(1), pages 23-41, March.
    13. Dileep, G., 2020. "A survey on smart grid technologies and applications," Renewable Energy, Elsevier, vol. 146(C), pages 2589-2625.
    14. Antti Silvast & Robin Williams & Sampsa Hyysalo & Kjetil Rommetveit & Charles Raab, 2018. "Who ‘Uses’ Smart Grids? The Evolving Nature of User Representations in Layered Infrastructures," Sustainability, MDPI, vol. 10(10), pages 1-21, October.
    15. Shin, Jungwoo & Park, Yuri & Lee, Daeho, 2018. "Who will be smart home users? An analysis of adoption and diffusion of smart homes," Technological Forecasting and Social Change, Elsevier, vol. 134(C), pages 246-253.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Gu & Peng Bao & Wenyuan Hao & Jaewoong Kim, 2019. "Empirical Examination of Intention to Continue to Use Smart Home Services," Sustainability, MDPI, vol. 11(19), pages 1-12, September.
    2. Attour, Amel & Baudino, Marco & Krafft, Jackie & Lazaric, Nathalie, 2020. "Determinants of energy tracking application use at the city level: Evidence from France," Energy Policy, Elsevier, vol. 147(C).
    3. Amel Attour & Marco Baudino & Jackie Krafft & Nathalie Lazaric, 2020. "Determinants of smart energy tracking application use at the city level: Evidence from France," Post-Print hal-02942483, HAL.
    4. Ferreira, Laura & Oliveira, Tiago & Neves, Catarina, 2023. "Consumer's intention to use and recommend smart home technologies: The role of environmental awareness," Energy, Elsevier, vol. 263(PC).
    5. Tu, Gengyang & Faure, Corinne & Schleich, Joachim & Guetlein, Marie-Charlotte, 2021. "The heat is off! The role of technology attributes and individual attitudes in the diffusion of Smart thermostats – findings from a multi-country survey," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    6. Birgul Basarir-Ozel & Hande Bahar Turker & Vesile Aslihan Nasir, 2022. "Identifying the Key Drivers and Barriers of Smart Home Adoption: A Thematic Analysis from the Business Perspective," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    7. Attié, Elodie & Meyer-Waarden, Lars, 2022. "The acceptance and usage of smart connected objects according to adoption stages: an enhanced technology acceptance model integrating the diffusion of innovation, uses and gratification and privacy ca," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    8. Große-Kreul, Felix, 2022. "What will drive household adoption of smart energy? Insights from a consumer acceptance study in Germany," Utilities Policy, Elsevier, vol. 75(C).
    9. Pal, Debajyoti & Zhang, Xiangmin & Siyal, Saeed, 2021. "Prohibitive factors to the acceptance of Internet of Things (IoT) technology in society: A smart-home context using a resistive modelling approach," Technology in Society, Elsevier, vol. 66(C).
    10. Daniel J. Mallinson & Saahir Shafi, 2022. "Smart home technology: Challenges and opportunities for collaborative governance and policy research," Review of Policy Research, Policy Studies Organization, vol. 39(3), pages 330-352, May.
    11. Wenqing Zhang & Liangliang Liu, 2022. "How consumers’ adopting intentions towards eco-friendly smart home services are shaped? An extended technology acceptance model," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 68(2), pages 307-330, April.
    12. Su-Yen Chen & Chiachun Lee, 2019. "Perceptions of the Impact of High-Level-Machine-Intelligence from University Students in Taiwan: The Case for Human Professions, Autonomous Vehicles, and Smart Homes," Sustainability, MDPI, vol. 11(21), pages 1-14, November.
    13. Baudier, Patricia & Ammi, Chantal & Deboeuf-Rouchon, Matthieu, 2020. "Smart home: Highly-educated students' acceptance," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    14. Furszyfer Del Rio, D.D., 2022. "Smart but unfriendly: Connected home products as enablers of conflict," Technology in Society, Elsevier, vol. 68(C).
    15. Christine Milchram & Geerten Van de Kaa & Neelke Doorn & Rolf Künneke, 2018. "Moral Values as Factors for Social Acceptance of Smart Grid Technologies," Sustainability, MDPI, vol. 10(8), pages 1-23, August.
    16. Manal Almalki & Majid H. Alsulami & Abdulrahman A. Alshdadi & Saleh N. Almuayqil & Mohammed S. Alsaqer & Anthony S. Atkins & Mohamed-Amine Choukou, 2022. "Delivering Digital Healthcare for Elderly: A Holistic Framework for the Adoption of Ambient Assisted Living," IJERPH, MDPI, vol. 19(24), pages 1-14, December.
    17. Schieweck, Alexandra & Uhde, Erik & Salthammer, Tunga & Salthammer, Lea C. & Morawska, Lidia & Mazaheri, Mandana & Kumar, Prashant, 2018. "Smart homes and the control of indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 705-718.
    18. Pettifor, Hazel & Wilson, Charlie, 2020. "Low carbon innovations for mobility, food, homes and energy: A synthesis of consumer attributes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    19. WeiYu Ji & Edwin H. W. Chan, 2019. "Critical Factors Influencing the Adoption of Smart Home Energy Technology in China: A Guangdong Province Case Study," Energies, MDPI, vol. 12(21), pages 1-24, November.
    20. Salem Ahmed Alabdali & Salvatore Flavio Pileggi & Dilek Cetindamar, 2023. "Influential Factors, Enablers, and Barriers to Adopting Smart Technology in Rural Regions: A Literature Review," Sustainability, MDPI, vol. 15(10), pages 1-38, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:120:y:2020:i:c:s1364032119308688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.