IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v13y2021i11p271-d665423.html
   My bibliography  Save this article

HyDSMaaS: A Hybrid Communication Infrastructure with LoRaWAN and LoraMesh for the Demand Side Management as a Service

Author

Listed:
  • Artur Felipe da Silva Veloso

    (Department of Computing, Federal University of Piauí (UFPI), Teresina 64049-550, PI, Brazil)

  • José Valdemir Reis Júnior

    (Department of Computing, Federal University of Piauí (UFPI), Teresina 64049-550, PI, Brazil)

  • Ricardo de Andrade Lira Rabelo

    (Department of Computing, Federal University of Piauí (UFPI), Teresina 64049-550, PI, Brazil)

  • Jocines Dela-flora Silveira

    (Department of Computing, Federal University of Piauí (UFPI), Teresina 64049-550, PI, Brazil)

Abstract

Seeking to solve problems in the power electric system (PES) related to exacerbated and uncontrolled energy consumption by final consumers such as residences, condominiums, public buildings and industries, electric power companies (EPC) are increasingly seeking new information and communication technologies (ICTs) to transform traditional electric power distribution networks into smart grids (SG). With this implementation, PES will be able to remotely control electric power consumption as well as monitor data generated by smart meters (SM). However, Internet-of-Things (IoT) technologies will enable all this to happen quickly and at low cost, since they are low-cost devices that can be deployed quickly and at scale in these scenarios. With this in mind, this work aimed to study, propose, and implement a hybrid communication infrastructure with LoRaWAN and LoraMesh for the demand-side management as a service (HyDSMaaS) using IoT devices such as long range (LoRa) to provide an advanced metering infrastructure (AMI) capable of performing all these applications as a service offered by EPC to end consumers. Additionally, services such as demand-side management (DSMaaS) can be used in this infrastructure. From the preliminary results it was found that the LoRaWAN network achieved a range of up to 2.35 km distance and the LoRaMESH one of 600 m; thus, the latter is more suitable for scenarios where there is little interference and the SMs are at long distances, while the other is used for scenarios with greater agglomeration of nearby SMs. Considering the hybridized scenario between LoraWAN and LoRaMESH, it can be seen that the implementation possibilities increase, since its range was approximately 3 km considering only one hop, and it can reach 1023 devices present in a mesh network. Thus, it was possible to propose the actual implementation of LoRaWAN and LoRaMESH protocols as well as the hybridization of the two protocols for HyDSMaaS. Additionally, the results obtained are exclusively from Radioenge’s LoRa technology, which can be further improved in the case of using more powerful equipment.

Suggested Citation

  • Artur Felipe da Silva Veloso & José Valdemir Reis Júnior & Ricardo de Andrade Lira Rabelo & Jocines Dela-flora Silveira, 2021. "HyDSMaaS: A Hybrid Communication Infrastructure with LoRaWAN and LoraMesh for the Demand Side Management as a Service," Future Internet, MDPI, vol. 13(11), pages 1-45, October.
  • Handle: RePEc:gam:jftint:v:13:y:2021:i:11:p:271-:d:665423
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/13/11/271/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/13/11/271/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Essiet, Ima O. & Sun, Yanxia & Wang, Zenghui, 2019. "Optimized energy consumption model for smart home using improved differential evolution algorithm," Energy, Elsevier, vol. 172(C), pages 354-365.
    2. Mehmet Ali Ertürk & Muhammed Ali Aydın & Muhammet Talha Büyükakkaşlar & Hayrettin Evirgen, 2019. "A Survey on LoRaWAN Architecture, Protocol and Technologies," Future Internet, MDPI, vol. 11(10), pages 1-34, October.
    3. Ayu Washizu & Satoshi Nakano & Hideo Ishii & Yasuhiro Hayashi, 2019. "Willingness to Pay for Home Energy Management Systems: A Survey in New York and Tokyo," Sustainability, MDPI, vol. 11(17), pages 1-20, September.
    4. Zhou, Bin & Li, Wentao & Chan, Ka Wing & Cao, Yijia & Kuang, Yonghong & Liu, Xi & Wang, Xiong, 2016. "Smart home energy management systems: Concept, configurations, and scheduling strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 30-40.
    5. Azarova, Valeriya & Cohen, Jed J. & Kollmann, Andrea & Reichl, Johannes, 2020. "Reducing household electricity consumption during evening peak demand times: Evidence from a field experiment," Energy Policy, Elsevier, vol. 144(C).
    6. Reda, Francesco & Fatima, Zarrin, 2019. "Northern European nearly zero energy building concepts for apartment buildings using integrated solar technologies and dynamic occupancy profile: Focus on Finland and other Northern European countries," Applied Energy, Elsevier, vol. 237(C), pages 598-617.
    7. Romuald Masnicki, 2017. "Validation of the Measurement Characteristics in an Instrument for Power Quality Estimation—A Case Study," Energies, MDPI, vol. 10(4), pages 1-16, April.
    8. Eduardo Viciana & Alfredo Alcayde & Francisco G. Montoya & Raul Baños & Francisco M. Arrabal-Campos & Antonio Zapata-Sierra & Francisco Manzano-Agugliaro, 2018. "OpenZmeter: An Efficient Low-Cost Energy Smart Meter and Power Quality Analyzer," Sustainability, MDPI, vol. 10(11), pages 1-13, November.
    9. Hui, Hongxun & Ding, Yi & Shi, Qingxin & Li, Fangxing & Song, Yonghua & Yan, Jinyue, 2020. "5G network-based Internet of Things for demand response in smart grid: A survey on application potential," Applied Energy, Elsevier, vol. 257(C).
    10. Zhihong Xu & Yan Gao & Muhammad Hussain & Panhong Cheng, 2020. "Demand Side Management for Smart Grid Based on Smart Home Appliances with Renewable Energy Sources and an Energy Storage System," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-20, April.
    11. Jianhua Zhang & Adarsh Hasandka & Jin Wei & S. M. Shafiul Alam & Tarek Elgindy & Anthony R. Florita & Bri-Mathias Hodge, 2018. "Hybrid Communication Architectures for Distributed Smart Grid Applications," Energies, MDPI, vol. 11(4), pages 1-16, April.
    12. Dileep, G., 2020. "A survey on smart grid technologies and applications," Renewable Energy, Elsevier, vol. 146(C), pages 2589-2625.
    13. Ju, Liwei & Wu, Jing & Lin, Hongyu & Tan, Qinliang & Li, Gen & Tan, Zhongfu & Li, Jiayu, 2020. "Robust purchase and sale transactions optimization strategy for electricity retailers with energy storage system considering two-stage demand response," Applied Energy, Elsevier, vol. 271(C).
    14. Sobhani, Seyed Omid & Sheykhha, Siamak & Madlener, Reinhard, 2020. "An integrated two-level demand-side management game applied to smart energy hubs with storage," Energy, Elsevier, vol. 206(C).
    15. Azarova, Valeriya & Cohen, Jed J. & Kollmann, Andrea & Reichl, Johannes, 2020. "Reducing household electricity consumption during evening peak demand times: Evidence from a field experiment," Munich Reprints in Economics 84731, University of Munich, Department of Economics.
    16. Esther, B. Priya & Kumar, K. Sathish, 2016. "A survey on residential Demand Side Management architecture, approaches, optimization models and methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 342-351.
    17. Renato Ferrero & Mario Collotta & Maria Victoria Bueno-Delgado & Hsing-Chung Chen, 2020. "Smart Management Energy Systems in Industry 4.0," Energies, MDPI, vol. 13(2), pages 1-3, January.
    18. Yoldaş, Yeliz & Önen, Ahmet & Muyeen, S.M. & Vasilakos, Athanasios V. & Alan, İrfan, 2017. "Enhancing smart grid with microgrids: Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 205-214.
    19. Lilia Tightiz & Hyosik Yang, 2020. "A Comprehensive Review on IoT Protocols’ Features in Smart Grid Communication," Energies, MDPI, vol. 13(11), pages 1-24, June.
    20. Yvonne Vogt Gwerder, Nuno Carvalho Figueiredo, and Patricia Pereira da Silva, 2019. "Investing in Smart Grids: Assessing the Influence of Regulatory and Market Factors on Investment Level," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    21. Nagender Kumar Suryadevara & Gyan Ranjan Biswal, 2019. "Smart Plugs: Paradigms and Applications in the Smart City-and-Smart Grid," Energies, MDPI, vol. 12(10), pages 1-20, May.
    22. Alaqeel, T.A. & Suryanarayanan, S., 2019. "A comprehensive cost-benefit analysis of the penetration of Smart Grid technologies in the Saudi Arabian electricity infrastructure," Utilities Policy, Elsevier, vol. 60(C), pages 1-1.
    23. Kabalci, Yasin, 2016. "A survey on smart metering and smart grid communication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 302-318.
    24. Ourahou, M. & Ayrir, W. & EL Hassouni, B. & Haddi, A., 2020. "Review on smart grid control and reliability in presence of renewable energies: Challenges and prospects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 167(C), pages 19-31.
    25. Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alvaro Llaria & Jessye Dos Santos & Guillaume Terrasson & Zina Boussaada & Christophe Merlo & Octavian Curea, 2021. "Intelligent Buildings in Smart Grids: A Survey on Security and Privacy Issues Related to Energy Management," Energies, MDPI, vol. 14(9), pages 1-37, May.
    2. Arman Goudarzi & Farzad Ghayoor & Muhammad Waseem & Shah Fahad & Issa Traore, 2022. "A Survey on IoT-Enabled Smart Grids: Emerging, Applications, Challenges, and Outlook," Energies, MDPI, vol. 15(19), pages 1-32, September.
    3. Marzal, Silvia & Salas, Robert & González-Medina, Raúl & Garcerá, Gabriel & Figueres, Emilio, 2018. "Current challenges and future trends in the field of communication architectures for microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3610-3622.
    4. Muhammad Awais Shahid & Fiaz Ahmad & Fahad R. Albogamy & Ghulam Hafeez & Zahid Ullah, 2022. "Detection and Prevention of False Data Injection Attacks in the Measurement Infrastructure of Smart Grids," Sustainability, MDPI, vol. 14(11), pages 1-25, May.
    5. Kolasa, Piotr & Janowski, Mirosław, 2017. "Study of possibilities to store energy virtually in a grid (VESS) with the use of smart metering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1513-1517.
    6. Giovanni Artale & Antonio Cataliotti & Valentina Cosentino & Dario Di Cara & Riccardo Fiorelli & Salvatore Guaiana & Nicola Panzavecchia & Giovanni Tinè, 2019. "A New Coupling Solution for G3-PLC Employment in MV Smart Grids," Energies, MDPI, vol. 12(13), pages 1-23, June.
    7. Chen, Chien-fei & Nelson, Hannah & Xu, Xiaojing & Bonilla, Gregory & Jones, Nicholas, 2021. "Beyond technology adoption: Examining home energy management systems, energy burdens and climate change perceptions during COVID-19 pandemic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Adélaïde Fadhuile & Daniel Llerena & Béatrice Roussillon, 2023. "Intrinsic Motivation to Promote the Development of Renewable Energy : A Field Experiment from Household Demand," Working Papers hal-03977597, HAL.
    9. Koasidis, Konstantinos & Marinakis, Vangelis & Nikas, Alexandros & Chira, Katerina & Flamos, Alexandros & Doukas, Haris, 2022. "Monetising behavioural change as a policy measure to support energy management in the residential sector: A case study in Greece," Energy Policy, Elsevier, vol. 161(C).
    10. Matthew Gough & Sérgio F. Santos & Mohammed Javadi & Rui Castro & João P. S. Catalão, 2020. "Prosumer Flexibility: A Comprehensive State-of-the-Art Review and Scientometric Analysis," Energies, MDPI, vol. 13(11), pages 1-32, May.
    11. Matteo Caldera & Asad Hussain & Sabrina Romano & Valerio Re, 2023. "Energy-Consumption Pattern-Detecting Technique for Household Appliances for Smart Home Platform," Energies, MDPI, vol. 16(2), pages 1-23, January.
    12. Antonio E. Saldaña-González & Andreas Sumper & Mònica Aragüés-Peñalba & Miha Smolnikar, 2020. "Advanced Distribution Measurement Technologies and Data Applications for Smart Grids: A Review," Energies, MDPI, vol. 13(14), pages 1-34, July.
    13. Emilio Ghiani & Alessandro Serpi & Virginia Pilloni & Giuliana Sias & Marco Simone & Gianluca Marcialis & Giuliano Armano & Paolo Attilio Pegoraro, 2018. "A Multidisciplinary Approach for the Development of Smart Distribution Networks," Energies, MDPI, vol. 11(10), pages 1-29, September.
    14. Lucas Roth & Jens Lowitzsch & Özgür Yildiz, 2021. "An Empirical Study of How Household Energy Consumption Is Affected by Co-Owning Different Technological Means to Produce Renewable Energy and the Production Purpose," Energies, MDPI, vol. 14(13), pages 1-38, July.
    15. Hosseini, Sayed Saeed & Agbossou, Kodjo & Kelouwani, Sousso & Cardenas, Alben, 2017. "Non-intrusive load monitoring through home energy management systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1266-1274.
    16. Leandra Scharnhorst & Thorben Sandmeier & Armin Ardone & Wolf Fichtner, 2021. "The Impact of Economic and Non-Economic Incentives to Induce Residential Demand Response—Findings from a Living Lab Experiment," Energies, MDPI, vol. 14(8), pages 1-24, April.
    17. Lilia Tightiz & Hyosik Yang & Mohammad Jalil Piran, 2020. "A Survey on Enhanced Smart Micro-Grid Management System with Modern Wireless Technology Contribution," Energies, MDPI, vol. 13(9), pages 1-21, May.
    18. Roslan, M.F. & Hannan, M.A. & Ker, Pin Jern & Uddin, M.N., 2019. "Microgrid control methods toward achieving sustainable energy management," Applied Energy, Elsevier, vol. 240(C), pages 583-607.
    19. András Kovács, 2021. "Inverse optimization approach to the identification of electricity consumer models," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(2), pages 521-537, June.
    20. Kayo Murakami & Hideki Shimada & Yoshiaki Ushifusa & Takanori Ida, 2022. "Heterogeneous Treatment Effects Of Nudge And Rebate: Causal Machine Learning In A Field Experiment On Electricity Conservation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1779-1803, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:13:y:2021:i:11:p:271-:d:665423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.