IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/2734362.html
   My bibliography  Save this article

Chicken Swarm Optimization Based on Elite Opposition-Based Learning

Author

Listed:
  • Chiwen Qu
  • Shi’an Zhao
  • Yanming Fu
  • Wei He

Abstract

Chicken swarm optimization is a new intelligent bionic algorithm, simulating the chicken swarm searching for food in nature. Basic algorithm is likely to fall into a local optimum and has a slow convergence rate. Aiming at these deficiencies, an improved chicken swarm optimization algorithm based on elite opposition-based learning is proposed. In cock swarm, random search based on adaptive distribution is adopted to replace that based on Gaussian distribution so as to balance the global exploitation ability and local development ability of the algorithm. In hen swarm, elite opposition-based learning is introduced to promote the population diversity. Dimension-by-dimension greedy search mode is used to do local search for individual of optimal chicken swarm in order to improve optimization precision. According to the test results of 18 standard test functions and 2 engineering structure optimization problems, this algorithm has better effect on optimization precision and speed compared with basic chicken algorithm and other intelligent optimization algorithms.

Suggested Citation

  • Chiwen Qu & Shi’an Zhao & Yanming Fu & Wei He, 2017. "Chicken Swarm Optimization Based on Elite Opposition-Based Learning," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-20, March.
  • Handle: RePEc:hin:jnlmpe:2734362
    DOI: 10.1155/2017/2734362
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2017/2734362.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2017/2734362.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/2734362?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Turgut, Oguz Emrah & Turgut, Mert Sinan, 2023. "Local search enhanced Aquila optimization algorithm ameliorated with an ensemble of Wavelet mutation strategies for complex optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 302-374.
    2. Yan, Zheping & Zhang, Jinzhong & Tang, Jialing, 2021. "Path planning for autonomous underwater vehicle based on an enhanced water wave optimization algorithm," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 192-241.
    3. Deb, Sanchari & Gao, Xiao-Zhi & Tammi, Kari & Kalita, Karuna & Mahanta, Pinakeswar, 2021. "A novel chicken swarm and teaching learning based algorithm for electric vehicle charging station placement problem," Energy, Elsevier, vol. 220(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:2734362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.