IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0189170.html
   My bibliography  Save this article

Improved approach for electric vehicle rapid charging station placement and sizing using Google maps and binary lightning search algorithm

Author

Listed:
  • Md Mainul Islam
  • Hussain Shareef
  • Azah Mohamed

Abstract

The electric vehicle (EV) is considered a premium solution to global warming and various types of pollution. Nonetheless, a key concern is the recharging of EV batteries. Therefore, this study proposes a novel approach that considers the costs of transportation loss, buildup, and substation energy loss and that incorporates harmonic power loss into optimal rapid charging station (RCS) planning. A novel optimization technique, called binary lightning search algorithm (BLSA), is proposed to solve the optimization problem. BLSA is also applied to a conventional RCS planning method. A comprehensive analysis is conducted to assess the performance of the two RCS planning methods by using the IEEE 34-bus test system as the power grid. The comparative studies show that the proposed BLSA is better than other optimization techniques. The daily total cost in RCS planning of the proposed method, including harmonic power loss, decreases by 10% compared with that of the conventional method.

Suggested Citation

  • Md Mainul Islam & Hussain Shareef & Azah Mohamed, 2017. "Improved approach for electric vehicle rapid charging station placement and sizing using Google maps and binary lightning search algorithm," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-20, December.
  • Handle: RePEc:plo:pone00:0189170
    DOI: 10.1371/journal.pone.0189170
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189170
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0189170&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0189170?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nur Ayeesha Qisteena Muzir & Md. Rayid Hasan Mojumder & Md. Hasanuzzaman & Jeyraj Selvaraj, 2022. "Challenges of Electric Vehicles and Their Prospects in Malaysia: A Comprehensive Review," Sustainability, MDPI, vol. 14(14), pages 1-40, July.
    2. Deb, Sanchari & Gao, Xiao-Zhi & Tammi, Kari & Kalita, Karuna & Mahanta, Pinakeswar, 2021. "A novel chicken swarm and teaching learning based algorithm for electric vehicle charging station placement problem," Energy, Elsevier, vol. 220(C).
    3. Amaro García-Suárez & José-Luis Guisado-Lizar & Fernando Diaz-del-Rio & Francisco Jiménez-Morales, 2021. "A Cellular Automata Agent-Based Hybrid Simulation Tool to Analyze the Deployment of Electric Vehicle Charging Stations," Sustainability, MDPI, vol. 13(10), pages 1-14, May.
    4. Nandini K. Krishnamurthy & Jayalakshmi N. Sabhahit & Vinay Kumar Jadoun & Dattatraya Narayan Gaonkar & Ashish Shrivastava & Vidya S. Rao & Ganesh Kudva, 2023. "Optimal Placement and Sizing of Electric Vehicle Charging Infrastructure in a Grid-Tied DC Microgrid Using Modified TLBO Method," Energies, MDPI, vol. 16(4), pages 1-27, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0189170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.