Path planning for autonomous underwater vehicle based on an enhanced water wave optimization algorithm
Author
Abstract
Suggested Citation
DOI: 10.1016/j.matcom.2020.09.019
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xiuli Wu & Yongquan Zhou & Yuting Lu, 2017. "Elite Opposition-Based Water Wave Optimization Algorithm for Global Optimization," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-25, January.
- Jin, Yang & Li, Shuai & Ren, Lu, 2020. "A new water wave optimization algorithm for satellite stability," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
- Chiwen Qu & Shi’an Zhao & Yanming Fu & Wei He, 2017. "Chicken Swarm Optimization Based on Elite Opposition-Based Learning," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-20, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Brennan McCann & Morad Nazari & Christopher Petersen, 2024. "Numerical Approaches for Constrained and Unconstrained, Static Optimization on the Special Euclidean Group SE(3)," Journal of Optimization Theory and Applications, Springer, vol. 201(3), pages 1116-1150, June.
- Qiyi He & Jin Tu & Zhiwei Ye & Mingwei Wang & Ye Cao & Xianjing Zhou & Wanfang Bai, 2023. "Association Rule Mining through Combining Hybrid Water Wave Optimization Algorithm with Levy Flight," Mathematics, MDPI, vol. 11(5), pages 1-19, February.
- Yan, Zheping & Yan, Jinyu & Wu, Yifan & Cai, Sijia & Wang, Hongxing, 2023. "A novel reinforcement learning based tuna swarm optimization algorithm for autonomous underwater vehicle path planning," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 209(C), pages 55-86.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Deb, Sanchari & Gao, Xiao-Zhi & Tammi, Kari & Kalita, Karuna & Mahanta, Pinakeswar, 2021. "A novel chicken swarm and teaching learning based algorithm for electric vehicle charging station placement problem," Energy, Elsevier, vol. 220(C).
- Turgut, Oguz Emrah & Turgut, Mert Sinan, 2023. "Local search enhanced Aquila optimization algorithm ameliorated with an ensemble of Wavelet mutation strategies for complex optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 302-374.
More about this item
Keywords
Water wave optimization (WWO); Elite opposition-based learning strategy; Simplex method; Function optimization; Path planning; Autonomous underwater vehicle (AUV);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:181:y:2021:i:c:p:192-241. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.