IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i10p5421-d553300.html
   My bibliography  Save this article

A Cellular Automata Agent-Based Hybrid Simulation Tool to Analyze the Deployment of Electric Vehicle Charging Stations

Author

Listed:
  • Amaro García-Suárez

    (Department of Computer Architecture and Technology, Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012 Sevilla, Spain)

  • José-Luis Guisado-Lizar

    (Department of Computer Architecture and Technology, Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012 Sevilla, Spain
    Research Institute of Computer Engineering (I3US), Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012 Sevilla, Spain)

  • Fernando Diaz-del-Rio

    (Department of Computer Architecture and Technology, Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012 Sevilla, Spain
    Research Institute of Computer Engineering (I3US), Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012 Sevilla, Spain)

  • Francisco Jiménez-Morales

    (Department of Condensed Matter Physics, Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012 Sevilla, Spain)

Abstract

We present a hybrid model combining cellular automata (CA) and agent-based modeling (ABM) to analyze the deployment of electric vehicle charging stations through microscopic traffic simulations. This model is implemented in a simulation tool called SIMTRAVEL, which allows combining electric vehicles (EVs) and internal combustion engine vehicles (ICEVs) that navigate in a city composed of streets, avenues, intersections, roundabouts, and including charging stations (CSs). Each EV is modeled as an agent that incorporates complex behaviors, such as decisions about the route to destination or CS, when to drive to a CS, or which CS to choose. We studied three different CS arrangements for a synthetic city: a single large central CS, four medium sized distributed CSs or multiple small distributed CSs, with diverse amounts of traffic and proportions of EVs. The simulator output is found to be robust and meaningful and allows one to extract a first useful conclusion: traffic conditions that create bottlenecks around the CSs play a crucial role, leading to a deadlock in the city when the traffic density is above a certain critical level. Our results show that the best disposition is a distributed network, but it is fundamental to introduce smart routing measures to balance the distribution of EVs among CSs.

Suggested Citation

  • Amaro García-Suárez & José-Luis Guisado-Lizar & Fernando Diaz-del-Rio & Francisco Jiménez-Morales, 2021. "A Cellular Automata Agent-Based Hybrid Simulation Tool to Analyze the Deployment of Electric Vehicle Charging Stations," Sustainability, MDPI, vol. 13(10), pages 1-14, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5421-:d:553300
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/10/5421/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/10/5421/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hong Gao & Kai Liu & Xinchao Peng & Cheng Li, 2020. "Optimal Location of Fast Charging Stations for Mixed Traffic of Electric Vehicles and Gasoline Vehicles Subject to Elastic Demands," Energies, MDPI, vol. 13(8), pages 1-16, April.
    2. Zhang, Jin & Wang, Zhenpo & Liu, Peng & Zhang, Zhaosheng, 2020. "Energy consumption analysis and prediction of electric vehicles based on real-world driving data," Applied Energy, Elsevier, vol. 275(C).
    3. Deb, Sanchari & Gao, Xiao-Zhi & Tammi, Kari & Kalita, Karuna & Mahanta, Pinakeswar, 2021. "A novel chicken swarm and teaching learning based algorithm for electric vehicle charging station placement problem," Energy, Elsevier, vol. 220(C).
    4. Li, Xin-Gang & Jia, Bin & Gao, Zi-You & Jiang, Rui, 2006. "A realistic two-lane cellular automata traffic model considering aggressive lane-changing behavior of fast vehicle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 479-486.
    5. Md Mainul Islam & Hussain Shareef & Azah Mohamed, 2017. "Improved approach for electric vehicle rapid charging station placement and sizing using Google maps and binary lightning search algorithm," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-20, December.
    6. Chunlin Guo & Jingjing Yang & Lin Yang, 2018. "Planning of Electric Vehicle Charging Infrastructure for Urban Areas with Tight Land Supply," Energies, MDPI, vol. 11(9), pages 1-17, September.
    7. Wojciech Cieslik & Filip Szwajca & Wojciech Golimowski & Andrew Berger, 2021. "Experimental Analysis of Residential Photovoltaic (PV) and Electric Vehicle (EV) Systems in Terms of Annual Energy Utilization," Energies, MDPI, vol. 14(4), pages 1-21, February.
    8. Xu, Min & Meng, Qiang, 2020. "Optimal deployment of charging stations considering path deviation and nonlinear elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 120-142.
    9. Kong, Weiwei & Luo, Yugong & Feng, Guixuan & Li, Keqiang & Peng, Huei, 2019. "Optimal location planning method of fast charging station for electric vehicles considering operators, drivers, vehicles, traffic flow and power grid," Energy, Elsevier, vol. 186(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanchari Deb, 2021. "Machine Learning for Solving Charging Infrastructure Planning Problems: A Comprehensive Review," Energies, MDPI, vol. 14(23), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong Gao & Kai Liu & Xinchao Peng & Cheng Li, 2020. "Optimal Location of Fast Charging Stations for Mixed Traffic of Electric Vehicles and Gasoline Vehicles Subject to Elastic Demands," Energies, MDPI, vol. 13(8), pages 1-16, April.
    2. Zhao, Zhonghao & Lee, Carman K.M. & Huo, Jiage, 2023. "EV charging station deployment on coupled transportation and power distribution networks via reinforcement learning," Energy, Elsevier, vol. 267(C).
    3. Sami M. Alshareef & Ahmed Fathy, 2023. "Efficient Red Kite Optimization Algorithm for Integrating the Renewable Sources and Electric Vehicle Fast Charging Stations in Radial Distribution Networks," Mathematics, MDPI, vol. 11(15), pages 1-30, July.
    4. Xiong, Siqin & Yuan, Yi & Yao, Jia & Bai, Bo & Ma, Xiaoming, 2023. "Exploring consumer preferences for electric vehicles based on the random coefficient logit model," Energy, Elsevier, vol. 263(PA).
    5. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    6. Hegde, Bharatkumar & Ahmed, Qadeer & Rizzoni, Giorgio, 2020. "Velocity and energy trajectory prediction of electrified powertrain for look ahead control," Applied Energy, Elsevier, vol. 279(C).
    7. Qiao, Yanfeng & Xue, Yu & Cen, Bingling & Zhang, Kun & Chen, Dong & Pan, Wei, 2024. "Study on particulate emission in two-lane mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    8. Duan, Ditao & Poursoleiman, Roza, 2021. "Modified teaching-learning-based optimization by orthogonal learning for optimal design of an electric vehicle charging station," Utilities Policy, Elsevier, vol. 72(C).
    9. Dimitrios Loukatos & Vasileios Arapostathis & Christos-Spyridon Karavas & Konstantinos G. Arvanitis & George Papadakis, 2024. "Power Consumption Analysis of a Prototype Lightweight Autonomous Electric Cargo Robot in Agricultural Field Operation Scenarios," Energies, MDPI, vol. 17(5), pages 1-24, March.
    10. Huang, Hai-chao & He, Hong-di & Peng, Zhong-ren, 2024. "Urban-scale estimation model of carbon emissions for ride-hailing electric vehicles during operational phase," Energy, Elsevier, vol. 293(C).
    11. Feng, Zhanyu & Zhang, Jian & Jiang, Han & Yao, Xuejian & Qian, Yu & Zhang, Haiyan, 2024. "Energy consumption prediction strategy for electric vehicle based on LSTM-transformer framework," Energy, Elsevier, vol. 302(C).
    12. Bryam Paúl Lojano-Riera & Carlos Flores-Vázquez & Juan-Carlos Cobos-Torres & David Vallejo-Ramírez & Daniel Icaza, 2023. "Electromobility with Photovoltaic Generation in an Andean City," Energies, MDPI, vol. 16(15), pages 1-16, July.
    13. Vitalii Naumov, 2021. "Substantiation of Loading Hub Location for Electric Cargo Bikes Servicing City Areas with Restricted Traffic," Energies, MDPI, vol. 14(4), pages 1-16, February.
    14. Tran, Cong Quoc & Keyvan-Ekbatani, Mehdi & Ngoduy, Dong & Watling, David, 2021. "Stochasticity and environmental cost inclusion for electric vehicles fast-charging facility deployment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    15. Kim, Sung Wook & Oh, Ki-Yong & Lee, Seungchul, 2022. "Novel informed deep learning-based prognostics framework for on-board health monitoring of lithium-ion batteries," Applied Energy, Elsevier, vol. 315(C).
    16. Verónica Anadón Martínez & Andreas Sumper, 2023. "Planning and Operation Objectives of Public Electric Vehicle Charging Infrastructures: A Review," Energies, MDPI, vol. 16(14), pages 1-41, July.
    17. Sun, Xilei & Fu, Jianqin, 2024. "Many-objective optimization of BEV design parameters based on gradient boosting decision tree models and the NSGA-III algorithm considering the ambient temperature," Energy, Elsevier, vol. 288(C).
    18. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
    19. Hamza El Hafdaoui & Hamza El Alaoui & Salma Mahidat & Zakaria El Harmouzi & Ahmed Khallaayoun, 2023. "Impact of Hot Arid Climate on Optimal Placement of Electric Vehicle Charging Stations," Energies, MDPI, vol. 16(2), pages 1-19, January.
    20. Wang, Yajun & Wang, Jidong & Cao, Man & Kong, Xiangyu & Abderrahim, Bouchedjira & Yuan, Long & Vartosh, Aris, 2023. "Dynamic emission dispatch considering the probabilistic model with multiple smart energy system players based on a developed fuzzy theory-based harmony search algorithm," Energy, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5421-:d:553300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.