IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v178y2019icp344-355.html
   My bibliography  Save this article

Production of hydrocarbons from a green algae (Oscillatoria) with exploration of its fuel characteristics over different reaction atmospheres

Author

Listed:
  • Kawale, Harshal D.
  • Kishore, Nanda

Abstract

Authors conducted non-catalytic, catalytic, and hydropyrolysis at 550 °C temperature and 1 bar pressure to produce biofuels from an ignored algal biomass of Oscillatoria by thermo-chemical degradation study in a tubular reactor having an internal diameter of 25 mm and 300 mm of active length covered by a furnace of a single heating zone. The catalysts used for the catalytic pyrolysis and hydropyrolysis study are TiO2: ZnO on 1:1 basis. Characterization of bio-oils by Fourier Transform Infrared Spectroscopy (FTIR) shows substantial variation in functional groups of all three types of bio-oils. Gas Chromatography-Mass Spectroscopy (GCMS) gives a detailed list of available hydrocarbons in bio-oil samples and proton NMR confirms the functionality of bio-oil by available proton assignments. Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD) shows morphology and the structural analogy of biochars with respect to biomass. Calorific values of three types of bio-oils ranges from 16.597 to 16.664 MJ/kg; and revealed that this particular biomass has potential as a resource of feedstock with an approximate yield of one-third of biomass on the dry weight basis. The pH of these bio-oils obtained from green algae varies in the range of 8.25 to 6.07 that indicates the less number of oxygenated compounds unlike very low pH bio-oils obtained from other types of biomass feedstock. Additionally, present results revealed that these bio-oils include formative compounds of most popular hydrocarbons, i.e., benzene, toluene and xylene (BTX). Further, they also include furans, phenols, benzaldehyde, guaiacol, caprolactam, styrene, oximes, etc. which can be used as green chemicals.

Suggested Citation

  • Kawale, Harshal D. & Kishore, Nanda, 2019. "Production of hydrocarbons from a green algae (Oscillatoria) with exploration of its fuel characteristics over different reaction atmospheres," Energy, Elsevier, vol. 178(C), pages 344-355.
  • Handle: RePEc:eee:energy:v:178:y:2019:i:c:p:344-355
    DOI: 10.1016/j.energy.2019.04.103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219307364
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.04.103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammad I. Jahirul & Mohammad G. Rasul & Ashfaque Ahmed Chowdhury & Nanjappa Ashwath, 2012. "Biofuels Production through Biomass Pyrolysis —A Technological Review," Energies, MDPI, vol. 5(12), pages 1-50, November.
    2. Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.
    3. Gollakota, Anjani R.K. & Reddy, Madhurima & Subramanyam, Malladi D. & Kishore, Nanda, 2016. "A review on the upgradation techniques of pyrolysis oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1543-1568.
    4. Hu, Zhiquan & Zheng, Yang & Yan, Feng & Xiao, Bo & Liu, Shiming, 2013. "Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): Product distribution and bio-oil characterization," Energy, Elsevier, vol. 52(C), pages 119-125.
    5. Collard, François-Xavier & Blin, Joël, 2014. "A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 594-608.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kawale, Harshal D. & Kishore, Nanda, 2020. "Comparative study on pyrolysis of Delonix Regia, Pinewood sawdust and their co-feed for plausible bio-fuels production," Energy, Elsevier, vol. 203(C).
    2. Rammohan, Draksharapu & Kishore, Nanda & Uppaluri, Ramagopal V.S., 2022. "Pyro–catalytic co–pyrolysis of Delonix regia and butyl rubber tube: Kinetic modelling and thermodynamic insights," Renewable Energy, Elsevier, vol. 201(P1), pages 194-203.
    3. Douvartzides, Savvas & Charisiou, Nikolaos D. & Wang, Wen & Papadakis, Vagelis G. & Polychronopoulou, Kyriaki & Goula, Maria A., 2022. "Catalytic fast pyrolysis of agricultural residues and dedicated energy crops for the production of high energy density transportation biofuels. Part II: Catalytic research," Renewable Energy, Elsevier, vol. 189(C), pages 315-338.
    4. Kawale, Harshal D. & Kishore, Nanda, 2021. "Comprehensive study on thermochemical putrefaction of Delonix Regia in non-catalytic, catalytic and hydro-catalytic pyrolysis atmospheres," Renewable Energy, Elsevier, vol. 173(C), pages 223-236.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kawale, Harshal D. & Kishore, Nanda, 2020. "Comparative study on pyrolysis of Delonix Regia, Pinewood sawdust and their co-feed for plausible bio-fuels production," Energy, Elsevier, vol. 203(C).
    2. Dai, Leilei & Wang, Yunpu & Liu, Yuhuan & Ruan, Roger & He, Chao & Yu, Zhenting & Jiang, Lin & Zeng, Zihong & Tian, Xiaojie, 2019. "Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 20-36.
    3. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    4. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    5. Andrade Díaz, Christhel & Albers, Ariane & Zamora-Ledezma, Ezequiel & Hamelin, Lorie, 2024. "The interplay between bioeconomy and the maintenance of long-term soil organic carbon stock in agricultural soils: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    6. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    7. Campuzano, Felipe & Brown, Robert C. & Martínez, Juan Daniel, 2019. "Auger reactors for pyrolysis of biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 372-409.
    8. Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.
    9. Hao Luo & Lukasz Niedzwiecki & Amit Arora & Krzysztof Mościcki & Halina Pawlak-Kruczek & Krystian Krochmalny & Marcin Baranowski & Mayank Tiwari & Anshul Sharma & Tanuj Sharma & Zhimin Lu, 2020. "Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier," Energies, MDPI, vol. 13(11), pages 1-19, June.
    10. Magdalena Matusiak & Radosław Ślęzak & Stanisław Ledakowicz, 2020. "Thermogravimetric Kinetics of Selected Energy Crops Pyrolysis," Energies, MDPI, vol. 13(15), pages 1-15, August.
    11. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Nikolaos Montesantos & Marco Maschietti, 2020. "Supercritical Carbon Dioxide Extraction of Lignocellulosic Bio-Oils: The Potential of Fuel Upgrading and Chemical Recovery," Energies, MDPI, vol. 13(7), pages 1-35, April.
    13. Liu, Zhi-Hua & Le, Rosemary K. & Kosa, Matyas & Yang, Bin & Yuan, Joshua & Ragauskas, Arthur J., 2019. "Identifying and creating pathways to improve biological lignin valorization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 349-362.
    14. Bhoi, P.R. & Ouedraogo, A.S. & Soloiu, V. & Quirino, R., 2020. "Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    15. Al-Rumaihi, Aisha & Shahbaz, Muhammad & Mckay, Gordon & Mackey, Hamish & Al-Ansari, Tareq, 2022. "A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    16. Francesco Miccio & Elettra Papa & Annalisa Natali Murri & Elena Landi & Matteo Minelli, 2021. "Pressurized Steam Conversion of Biomass Residues for Liquid Hydrocarbons Generation," Energies, MDPI, vol. 14(4), pages 1-12, February.
    17. Ly, Hoang Vu & Kim, Seung-Soo & Woo, Hee Chul & Choi, Jae Hyung & Suh, Dong Jin & Kim, Jinsoo, 2015. "Fast pyrolysis of macroalga Saccharina japonica in a bubbling fluidized-bed reactor for bio-oil production," Energy, Elsevier, vol. 93(P2), pages 1436-1446.
    18. Merckel, Ryan D. & Heydenrych, Mike D. & Sithole, Bruce B., 2021. "Pyrolysis oil composition and catalytic activity estimated by cumulative mass analysis using Py-GC/MS EGA-MS," Energy, Elsevier, vol. 219(C).
    19. Siddiqi, Hammad & Bal, Manisha & Kumari, Usha & Meikap, B.C., 2020. "In-depth physiochemical characterization and detailed thermo-kinetic study of biomass wastes to analyze its energy potential," Renewable Energy, Elsevier, vol. 148(C), pages 756-771.
    20. Hansen, Samuel & Mirkouei, Amin & Diaz, Luis A., 2020. "A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:178:y:2019:i:c:p:344-355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.