IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v217y2021ics0360544220324531.html
   My bibliography  Save this article

Study of the water injection control parameters on combustion performance of a spark-ignition engine

Author

Listed:
  • Rocha, Déborah Domingos da
  • de Castro Radicchi, Fábio
  • Lopes, Gustavo Santos
  • Brunocilla, Marcello Francisco
  • Gomes, Paulo César de Ferreira
  • Santos, Nathalia Duarte Souza Alvarenga
  • Malaquias, Augusto César Teixeira
  • Rodrigues Filho, Fernando Antonio
  • Baêta, José Guilherme Coelho

Abstract

This paper reports an experimental study of the water injection control parameters in a single-cylinder research engine at 1500 rpm, under 5 and 8 bar indicated mean effective pressure (IMEP). The results were used to validate a tridimensional numerical model, and simulations extrapolated the experimental test conditions up to 10 bar IMEP and 3000 rpm. The main purpose of this work was to assess the impact of different water injection strategies on the engine combustion parameters. An interesting finding was that variations in the water injection temperature did not significantly influence fuel conversion efficiency, as one could expect. Nevertheless, the proper water injection timing and pressure calibration reduced the indicated specific fuel consumption (ISFC) by 3% and 3.5%, respectively, with more pronounced effects at the highest engine load. Furthermore, if knock mitigation is prioritized over ISFC, the amount of water injected can be reduced. However, this strategy leads to in-cylinder temperature reductions that influence the burning speed and consequently the peak in-cylinder pressure.

Suggested Citation

  • Rocha, Déborah Domingos da & de Castro Radicchi, Fábio & Lopes, Gustavo Santos & Brunocilla, Marcello Francisco & Gomes, Paulo César de Ferreira & Santos, Nathalia Duarte Souza Alvarenga & Malaquias, , 2021. "Study of the water injection control parameters on combustion performance of a spark-ignition engine," Energy, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:energy:v:217:y:2021:i:c:s0360544220324531
    DOI: 10.1016/j.energy.2020.119346
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220324531
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119346?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Serrano, J. & Jiménez-Espadafor, F.J. & López, A., 2019. "Analysis of the effect of the hydrogen as main fuel on the performance of a modified compression ignition engine with water injection," Energy, Elsevier, vol. 173(C), pages 911-925.
    2. Wamankar, Arun Kumar & Satapathy, Ashok Kumar & Murugan, S., 2015. "Experimental investigation of the effect of compression ratio, injection timing & pressure in a DI (direct injection) diesel engine running on carbon black-water-diesel emulsion," Energy, Elsevier, vol. 93(P1), pages 511-520.
    3. Zhao, Jinxing, 2017. "Research and application of over-expansion cycle (Atkinson and Miller) engines – A review," Applied Energy, Elsevier, vol. 185(P1), pages 300-319.
    4. Roso, Vinícius Rückert & Santos, Nathália Duarte Souza Alvarenga & Valle, Ramon Molina & Alvarez, Carlos Eduardo Castilla & Monsalve-Serrano, Javier & García, Antonio, 2019. "Evaluation of a stratified prechamber ignition concept for vehicular applications in real world and standardized driving cycles," Applied Energy, Elsevier, vol. 254(C).
    5. Wang, Chenyao & Zhang, Fujun & Wang, Enhua & Yu, Chuncun & Gao, Hongli & Liu, Bolan & Zhao, Zhenfeng & Zhao, Changlu, 2019. "Experimental study on knock suppression of spark-ignition engine fuelled with kerosene via water injection," Applied Energy, Elsevier, vol. 242(C), pages 248-259.
    6. Szabados, György & Bereczky, Ákos & Ajtai, Tibor & Bozóki, Zoltán, 2018. "Evaluation analysis of particulate relevant emission of a diesel engine running on fossil diesel and different biofuels," Energy, Elsevier, vol. 161(C), pages 1139-1153.
    7. da Costa, Roberto Berlini Rodrigues & Valle, Ramón Molina & Hernández, Juan J. & Malaquias, Augusto César Teixeira & Coronado, Christian J.R. & Pujatti, Fabrício José Pacheco, 2020. "Experimental investigation on the potential of biogas/ethanol dual-fuel spark-ignition engine for power generation: Combustion, performance and pollutant emission analysis," Applied Energy, Elsevier, vol. 261(C).
    8. Min, Se Hun & Suh, Hyun Kyu & Cha, Junepyo, 2020. "Effect of Simulated-EGR (N2) on the distribution characteristics of equivalence ratio and the formation of exhaust emissions in a CI engine under early injection conditions," Energy, Elsevier, vol. 193(C).
    9. Kalghatgi, Gautam, 2018. "Is it really the end of internal combustion engines and petroleum in transport?," Applied Energy, Elsevier, vol. 225(C), pages 965-974.
    10. Hemmat Esfe, Mohammad & Abbasian Arani, Ali Akbar & Esfandeh, Saeed & Afrand, Masoud, 2019. "Proposing new hybrid nano-engine oil for lubrication of internal combustion engines: Preventing cold start engine damages and saving energy," Energy, Elsevier, vol. 170(C), pages 228-238.
    11. Wamankar, Arun Kumar & Murugan, S., 2015. "Combustion, performance and emission characteristics of a diesel engine with internal jet piston using carbon black- water- diesel emulsion," Energy, Elsevier, vol. 91(C), pages 1030-1037.
    12. Bozza, Fabio & De Bellis, Vincenzo & Teodosio, Luigi, 2016. "Potentials of cooled EGR and water injection for knock resistance and fuel consumption improvements of gasoline engines," Applied Energy, Elsevier, vol. 169(C), pages 112-125.
    13. García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago & Rückert Roso, Vinícius & Duarte Souza Alvarenga Santos, Nathália, 2020. "Potential of bio-ethanol in different advanced combustion modes for hybrid passenger vehicles," Renewable Energy, Elsevier, vol. 150(C), pages 58-77.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thiago Rodrigo Vieira da Silva & Nilton Antonio Diniz Netto & Jeanine Costa Santos & Augusto Cesar Teixeira Malaquias & José Guilherme Coelho Baêta, 2022. "Development Procedure for Performance Estimation and Main Dimensions Calculation of a Highly-Boosted Ethanol Engine with Water Injection," Energies, MDPI, vol. 15(13), pages 1-24, June.
    2. Serrano, José Ramón & Martín, Jaime & Piqueras, Pedro & Tabet, Roberto & Gómez, Javier, 2023. "Effect of natural and forced charge air humidity on the performance and emissions of a compression-ignition engine operating at high warm altitude," Energy, Elsevier, vol. 266(C).
    3. Andrey V. Minakov & Viktor A. Kuznetsov & Artem A. Dekterev & Igor S. Anufriev & Evgeny P. Kopyev & Sergey V. Alekseenko, 2022. "Comparative Analysis of Numerical Methods for Simulating N -Heptane Combustion with Steam Additive," Energies, MDPI, vol. 16(1), pages 1-25, December.
    4. Galindo, José & Navarro, Roberto & De la Morena, Joaquín & Pitarch, Rafael & Guilain, Stéphane, 2022. "On combustion instability induced by water condensation in a low-pressure exhaust gas recirculation system for spark-ignition engines," Energy, Elsevier, vol. 261(PA).
    5. Roberto Martinelli & Federico Ricci & Gabriele Discepoli & Luca Petrucci & Stefano Papi & Carlo N. Grimaldi, 2023. "Thermal Energy and Luminosity Characterization of an Advanced Ignition System Using a Non-Intrusive Methodology in an Optically Accessible Calorimeter," Energies, MDPI, vol. 16(1), pages 1-22, January.
    6. Anufriev, I.S. & Kopyev, E.P. & Alekseenko, S.V. & Sharypov, O.V. & Vigriyanov, M.S., 2022. "New ecology safe waste-to-energy technology of liquid fuel combustion with superheated steam," Energy, Elsevier, vol. 250(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mendiburu, Andrés Z. & Lauermann, Carlos H. & Hayashi, Thamy C. & Mariños, Diego J. & Rodrigues da Costa, Roberto Berlini & Coronado, Christian J.R. & Roberts, Justo J. & de Carvalho, João A., 2022. "Ethanol as a renewable biofuel: Combustion characteristics and application in engines," Energy, Elsevier, vol. 257(C).
    2. Duarte Souza Alvarenga Santos, Nathália & Rückert Roso, Vinícius & Teixeira Malaquias, Augusto César & Coelho Baêta, José Guilherme, 2021. "Internal combustion engines and biofuels: Examining why this robust combination should not be ignored for future sustainable transportation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    3. Wu, Jingtao & Zhang, Zhehao & Kang, Zhe & Deng, Jun & Li, Liguang & Wu, Zhijun, 2022. "An assessment methodology for fuel/water consumption co-optimization of a gasoline engine with port water injection," Applied Energy, Elsevier, vol. 310(C).
    4. Aqian Li & Zhaolei Zheng, 2020. "Effect of Spark Ignition Timing and Water Injection Temperature on the Knock Combustion of a GDI Engine," Energies, MDPI, vol. 13(18), pages 1-24, September.
    5. Amaral, Lucimar Venâncio & Santos, Nathália Duarte Souza Alvarenga & Roso, Vinícius Rückert & Sebastião, Rita de Cássia de Oliveira & Pujatti, Fabrício José Pacheco, 2021. "Effects of gasoline composition on engine performance, exhaust gases and operational costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Ismael, Mhadi A. & A. Aziz, A. Rashid & Mohammed, Salah E. & Zainal A, Ezrann Z. & Baharom, Masri B. & Hagos, Ftwi Yohaness, 2021. "Macroscopic and microscopic spray structure of water-in-diesel emulsions," Energy, Elsevier, vol. 223(C).
    7. Krishnamoorthi, M. & Malayalamurthi, R. & Sakthivel, R., 2019. "Optimization of compression ignition engine fueled with diesel - chaulmoogra oil - diethyl ether blend with engine parameters and exhaust gas recirculation," Renewable Energy, Elsevier, vol. 134(C), pages 579-602.
    8. Jayabal, Ravikumar & Subramani, Sekar & Dillikannan, Damodharan & Devarajan, Yuvarajan & Thangavelu, Lakshmanan & Nedunchezhiyan, Mukilarasan & Kaliyaperumal, Gopal & De Poures, Melvin Victor, 2022. "Multi-objective optimization of performance and emission characteristics of a CRDI diesel engine fueled with sapota methyl ester/diesel blends," Energy, Elsevier, vol. 250(C).
    9. Manimaran, Rajayokkiam & Mohanraj, Thangavelu & Venkatesan, Moorthy & Ganesan, Rajamohan & Balasubramanian, Dhinesh, 2022. "A computational technique for prediction and optimization of VCR engine performance and emission parameters fuelled with Trichosanthes cucumerina biodiesel using RSM with desirability function approac," Energy, Elsevier, vol. 254(PB).
    10. Wang, Dawei & Shi, Lei & Zhu, Sipeng & Liu, Bo & Qian, Yuehua & Deng, Kangyao, 2020. "Numerical and thermodynamic study on effects of high and low pressure exhaust gas recirculation on turbocharged marine low-speed engine," Applied Energy, Elsevier, vol. 261(C).
    11. Goel, Varun & Kumar, Naresh & Singh, Paramvir, 2018. "Impact of modified parameters on diesel engine characteristics using biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2716-2729.
    12. Vellaiyan, Suresh, 2020. "Combustion, performance and emission evaluation of a diesel engine fueled with soybean biodiesel and its water blends," Energy, Elsevier, vol. 201(C).
    13. Li, Xiangrong & Gao, Haobu & Zhao, Luming & Zhang, Zheng & He, Xu & Liu, Fushui, 2016. "Combustion and emission performance of a split injection diesel engine in a double swirl combustion system," Energy, Elsevier, vol. 114(C), pages 1135-1146.
    14. Zhao, Jinxing & Fu, Rui & Wang, Sen & Xu, Hongchang & Yuan, Zhiyuan, 2022. "Fuel economy improvement of a turbocharged gasoline SI engine through combining cooled EGR and high compression ratio," Energy, Elsevier, vol. 239(PE).
    15. Barbosa, Társis Prado & Eckert, Jony Javorski & Roso, Vinícius Rückert & Pujatti, Fabrício José Pacheco & da Silva, Leonardo Adolpho Rodrigues & Horta Gutiérrez, Juan Carlos, 2021. "Fuel saving and lower pollutants emissions using an ethanol-fueled engine in a hydraulic hybrid passengers vehicle," Energy, Elsevier, vol. 235(C).
    16. Bhowmick, Pathikrit & Jeevanantham, A.K. & Ashok, B. & Nanthagopal, K. & Perumal, D. Arumuga & Karthickeyan, V. & Vora, K.C. & Jain, Aatmesh, 2019. "Effect of fuel injection strategies and EGR on biodiesel blend in a CRDI engine," Energy, Elsevier, vol. 181(C), pages 1094-1113.
    17. Krishnamoorthi, M. & Malayalamurthi, R., 2017. "Experimental investigation on performance, emission behavior and exergy analysis of a variable compression ratio engine fueled with diesel - aegle marmelos oil - diethyl ether blends," Energy, Elsevier, vol. 128(C), pages 312-328.
    18. M Krishnamoorthi & R Malayalamurthi, 2018. "Effect of exhaust gas recirculation and charge inlet temperature on performance, combustion, and emission characteristics of diesel engine with bael oil blends," Energy & Environment, , vol. 29(3), pages 372-391, May.
    19. da Costa, Roberto Berlini Rodrigues & Rodrigues Filho, Fernando Antônio & Moreira, Thiago Augusto Araújo & Baêta, José Guilherme Coelho & Guzzo, Márcio Expedito & de Souza, José Leôncio Fonseca, 2020. "Exploring the lean limit operation and fuel consumption improvement of a homogeneous charge pre-chamber torch ignition system in an SI engine fueled with a gasoline-bioethanol blend," Energy, Elsevier, vol. 197(C).
    20. Krishnamoorthi, M. & Malayalamurthi, R., 2018. "Availability analysis, performance, combustion and emission behavior of bael oil - diesel - diethyl ether blends in a variable compression ratio diesel engine," Renewable Energy, Elsevier, vol. 119(C), pages 235-252.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:217:y:2021:i:c:s0360544220324531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.