IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v181y2019icp1094-1113.html
   My bibliography  Save this article

Effect of fuel injection strategies and EGR on biodiesel blend in a CRDI engine

Author

Listed:
  • Bhowmick, Pathikrit
  • Jeevanantham, A.K.
  • Ashok, B.
  • Nanthagopal, K.
  • Perumal, D. Arumuga
  • Karthickeyan, V.
  • Vora, K.C.
  • Jain, Aatmesh

Abstract

Biodiesel appears as a replenishable and sustainable energy source and can be used a direct replacement to petro-diesel without any major transformations in ongoing diesel engines. This work concentrates on production of Calophyllum Inophyllum biodiesel (CIB) and preparing 10% blend (CIB10) sample to investigate the effects of varying the injection strategies and exhaust gas recirculation (EGR) in common-rail direct injection engine. The experimental results shows that 10% of pilot fuel and 90% main injection strategy (B10@P10-M90) is superior among all others injection strategies with respect to pure diesel. B10@P10-M90 fuel injection strategy produces the maximum efficiency of 35.8% and lowest fuel consumption of 0.25 kg/kWh compared to all the injection strategies. The carbon monoxide (CO) and hydrocarbon (HC) emissions are also found to be quite low compared to all the other test samples including pure diesel. However B10@P10-M90 results in higher average oxides of nitrogen (NOx) emission which is 18.9% higher in contrast to conventional diesel at full load condition. With the implementation of 10% and 20% EGR with B10@P10-M90, the average NOx emissions decreased by 14.4% and 27.6% respectively compared to B10@P10-M90 without any EGR without significant loss in the performance of the existing diesel engine.

Suggested Citation

  • Bhowmick, Pathikrit & Jeevanantham, A.K. & Ashok, B. & Nanthagopal, K. & Perumal, D. Arumuga & Karthickeyan, V. & Vora, K.C. & Jain, Aatmesh, 2019. "Effect of fuel injection strategies and EGR on biodiesel blend in a CRDI engine," Energy, Elsevier, vol. 181(C), pages 1094-1113.
  • Handle: RePEc:eee:energy:v:181:y:2019:i:c:p:1094-1113
    DOI: 10.1016/j.energy.2019.06.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219311387
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.06.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ndayishimiye, Pascal & Tazerout, Mohand, 2011. "Use of palm oil-based biofuel in the internal combustion engines: Performance and emissions characteristics," Energy, Elsevier, vol. 36(3), pages 1790-1796.
    2. Park, Su Han & Yoon, Seung Hyun & Lee, Chang Sik, 2011. "Effects of multiple-injection strategies on overall spray behavior, combustion, and emissions reduction characteristics of biodiesel fuel," Applied Energy, Elsevier, vol. 88(1), pages 88-98, January.
    3. Xue, Jinlin & Grift, Tony E. & Hansen, Alan C., 2011. "Effect of biodiesel on engine performances and emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1098-1116, February.
    4. Wamankar, Arun Kumar & Satapathy, Ashok Kumar & Murugan, S., 2015. "Experimental investigation of the effect of compression ratio, injection timing & pressure in a DI (direct injection) diesel engine running on carbon black-water-diesel emulsion," Energy, Elsevier, vol. 93(P1), pages 511-520.
    5. Belgiorno, Giacomo & Dimitrakopoulos, Nikolaos & Di Blasio, Gabriele & Beatrice, Carlo & Tunestål, Per & Tunér, Martin, 2018. "Effect of the engine calibration parameters on gasoline partially premixed combustion performance and emissions compared to conventional diesel combustion in a light-duty Euro 6 engine," Applied Energy, Elsevier, vol. 228(C), pages 2221-2234.
    6. Ashok, B. & Nanthagopal, K. & Mohan, Aravind & Johny, Ajith & Tamilarasu, A., 2017. "Comparative analysis on the effect of zinc oxide and ethanox as additives with biodiesel in CI engine," Energy, Elsevier, vol. 140(P1), pages 352-364.
    7. Wamankar, Arun Kumar & Murugan, S., 2015. "Combustion, performance and emission characteristics of a diesel engine with internal jet piston using carbon black- water- diesel emulsion," Energy, Elsevier, vol. 91(C), pages 1030-1037.
    8. Jeon, Joonho & Park, Sungwook, 2015. "Effects of pilot injection strategies on the flame temperature and soot distributions in an optical CI engine fueled with biodiesel and conventional diesel," Applied Energy, Elsevier, vol. 160(C), pages 581-591.
    9. Khandal, S.V. & Banapurmath, N.R. & Gaitonde, V.N., 2017. "Effect of exhaust gas recirculation, fuel injection pressure and injection timing on the performance of common rail direct injection engine powered with honge biodiesel (BHO)," Energy, Elsevier, vol. 139(C), pages 828-841.
    10. Ong, H.C. & Mahlia, T.M.I. & Masjuki, H.H. & Norhasyima, R.S., 2011. "Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3501-3515.
    11. Lapuerta, Magín & Rodríguez-Fernández, José & García-Contreras, Reyes, 2015. "Effect of a glycerol-derived advanced biofuel –FAGE (fatty acid formal glycerol ester)– on the emissions of a diesel engine tested under the New European Driving Cycle," Energy, Elsevier, vol. 93(P1), pages 568-579.
    12. Paul, Abhishek & Panua, Raj Sekhar & Debroy, Durbadal & Bose, Probir Kumar, 2014. "Effect of compressed natural gas dual fuel operation with diesel and Pongamia pinnata methyl ester (PPME) as pilot fuels on performance and emission characteristics of a CI (compression ignition) engi," Energy, Elsevier, vol. 68(C), pages 495-509.
    13. Khandal, S.V. & Banapurmath, N.R. & Gaitonde, V.N. & Hiremath, S.S., 2017. "Paradigm shift from mechanical direct injection diesel engines to advanced injection strategies of diesel homogeneous charge compression ignition (HCCI) engines- A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 369-384.
    14. Paul, Abhishek & Bose, Probir Kumar & Panua, Raj Sekhar & Banerjee, Rahul, 2013. "An experimental investigation of performance-emission trade off of a CI engine fueled by diesel–compressed natural gas (CNG) combination and diesel–ethanol blends with CNG enrichment," Energy, Elsevier, vol. 55(C), pages 787-802.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Miao & Derafshzan, Saeed & Richter, Mattias & Lundgren, Marcus, 2020. "Effects of different injection strategies on ignition and combustion characteristics in an optical PPC engine," Energy, Elsevier, vol. 203(C).
    2. de la Garza, Oscar A. & Martínez-Martínez, S. & Avulapati, Madan Mohan & Pos, Radboud & Megaritis, Thanos & Ganippa, Lionel, 2021. "Biofuels and its spray interactions under pilot-main injection strategy," Energy, Elsevier, vol. 219(C).
    3. Ayhan, Vezir & Çangal, Çiçek & Cesur, İdris & Safa, Aykut, 2020. "Combined influence of supercharging, EGR, biodiesel and ethanol on emissions of a diesel engine: Proposal of an optimization strategy," Energy, Elsevier, vol. 207(C).
    4. Çeli̇k, Mehmet & Bayindirli, Cihan, 2020. "Enhancement performance and exhaust emissions of rapeseed methyl ester by using n-hexadecane and n-hexane fuel additives," Energy, Elsevier, vol. 202(C).
    5. Vigneshwar, V. & Krishnan, S. Yogesh & Kishna, R. Susanth & Srinath, R. & Ashok, B. & Nanthagopal, K., 2019. "Comprehensive review of Calophyllum inophyllum as a feasible alternate energy for CI engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    6. Kulandaivel Duraisamy & Rahamathullah Ismailgani & Sathiyagnanam Amudhavalli Paramasivam & Gopal Kaliyaperumal & Damodharan Dillikannan, 2021. "Emission profiling of a common rail direct injection diesel engine fueled with hydrocarbon fuel extracted from waste high density polyethylene as a partial replacement for diesel with some modificatio," Energy & Environment, , vol. 32(3), pages 481-505, May.
    7. Lawrence Joseph Fernandes & C. R. Rajashekhar & T. M. Yunus Khan & Syed Javed & Rahmath Ulla Baig, 2022. "Influence of Pilot-Fueling and Nozzle-Opening Pressure on Performance and Tailpipe Emissions of WCO Biodiesel in a CRDi Engine," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    8. Gintaras Valeika & Jonas Matijošius & Krzysztof Górski & Alfredas Rimkus & Ruslans Smigins, 2021. "A Study of Energy and Environmental Parameters of a Diesel Engine Running on Hydrogenated Vegetable Oil (HVO) with Addition of Biobutanol and Castor Oil," Energies, MDPI, vol. 14(13), pages 1-29, July.
    9. Feng, Renhua & Li, Guanghua & Sun, Zhengwei & Hu, Xiulin & Deng, Banglin & Fu, Jianqin, 2023. "Potential of emission reduction of a turbo-charged non-road diesel engine without aftertreatment under multiple operating scenarios," Energy, Elsevier, vol. 263(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krishnamoorthi, M. & Malayalamurthi, R., 2017. "Experimental investigation on performance, emission behavior and exergy analysis of a variable compression ratio engine fueled with diesel - aegle marmelos oil - diethyl ether blends," Energy, Elsevier, vol. 128(C), pages 312-328.
    2. Shahir, S.A. & Masjuki, H.H. & Kalam, M.A. & Imran, A. & Fattah, I.M. Rizwanul & Sanjid, A., 2014. "Feasibility of diesel–biodiesel–ethanol/bioethanol blend as existing CI engine fuel: An assessment of properties, material compatibility, safety and combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 379-395.
    3. T. M. Yunus Khan, 2020. "A Review of Performance-Enhancing Innovative Modifications in Biodiesel Engines," Energies, MDPI, vol. 13(17), pages 1-22, August.
    4. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    5. Hawi, Meshack & Elwardany, Ahmed & Ookawara, Shinichi & Ahmed, Mahmoud, 2019. "Effect of compression ratio on performance, combustion and emissions characteristics of compression ignition engine fueled with jojoba methyl ester," Renewable Energy, Elsevier, vol. 141(C), pages 632-645.
    6. Chang, Yu-Cheng & Lee, Wen-Jhy & Wu, Tser Son & Wu, Chang-Yu & Chen, Shui-Jen, 2014. "Use of water containing acetone–butanol–ethanol for NOx-PM (nitrogen oxide-particulate matter) trade-off in the diesel engine fueled with biodiesel," Energy, Elsevier, vol. 64(C), pages 678-687.
    7. Goel, Varun & Kumar, Naresh & Singh, Paramvir, 2018. "Impact of modified parameters on diesel engine characteristics using biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2716-2729.
    8. Mofijur, M. & Atabani, A.E. & Masjuki, H.H. & Kalam, M.A. & Masum, B.M., 2013. "A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: A comparative evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 391-404.
    9. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. D´Agosto, Márcio de Almeida & Vieira da Silva, Marcelino Aurélio & de Oliveira, Cíntia Machado & Franca, Luíza Santana & da Costa Marques, Luiz Guilherme & Soares Murta, Aurélio Lamare & de Freitas, M, 2015. "Evaluating the potential of the use of biodiesel for power generation in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 807-817.
    11. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Ashrafur Rahman, S.M. & Mahmudul, H.M., 2015. "Energy scenario and biofuel policies and targets in ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 51-61.
    12. Meng, Xiangyu & Zhou, Yihui & Yang, Tianhao & Long, Wuqiang & Bi, Mingshu & Tian, Jiangping & Lee, Chia-Fon F., 2020. "An experimental investigation of a dual-fuel engine by using bio-fuel as the additive," Renewable Energy, Elsevier, vol. 147(P1), pages 2238-2249.
    13. Rocha, Déborah Domingos da & de Castro Radicchi, Fábio & Lopes, Gustavo Santos & Brunocilla, Marcello Francisco & Gomes, Paulo César de Ferreira & Santos, Nathalia Duarte Souza Alvarenga & Malaquias, , 2021. "Study of the water injection control parameters on combustion performance of a spark-ignition engine," Energy, Elsevier, vol. 217(C).
    14. Senthilraja, R. & Sivakumar, V. & Thirugnanasambandham, K. & Nedunchezhian, N., 2016. "Performance, emission and combustion characteristics of a dual fuel engine with Diesel–Ethanol – Cotton seed oil Methyl ester blends and Compressed Natural Gas (CNG) as fuel," Energy, Elsevier, vol. 112(C), pages 899-907.
    15. M Krishnamoorthi & R Malayalamurthi, 2018. "Effect of exhaust gas recirculation and charge inlet temperature on performance, combustion, and emission characteristics of diesel engine with bael oil blends," Energy & Environment, , vol. 29(3), pages 372-391, May.
    16. Sanjid, A. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Abedin, M.J. & Palash, S.M., 2013. "Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 664-682.
    17. Varun, & Singh, Paramvir & Tiwari, Samaresh Kumar & Singh, Rituparn & Kumar, Naresh, 2017. "Modification in combustion chamber geometry of CI engines for suitability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1016-1033.
    18. T. M. Yunus Khan & Irfan Anjum Badruddin & Manzoore Elahi M. Soudagar & Sanjeev V. Khandal & Sarfaraz Kamangar & Imran Mokashi & M. A. Mujtaba & Nazia Hossain, 2021. "Biodiesel Production Using Modified Direct Transesterification by Sequential Use of Acid-Base Catalysis and Performance Evaluation of Diesel Engine Using Various Blends," Sustainability, MDPI, vol. 13(17), pages 1-17, August.
    19. Janakiraman, S. & Lakshmanan, T. & Raghu, P., 2021. "Experimental investigative analysis of ternary (diesel + biodiesel + bio-ethanol) fuel blended with metal-doped titanium oxide nanoadditives tested on a diesel engine," Energy, Elsevier, vol. 235(C).
    20. How, H.G. & Teoh, Y.H. & Masjuki, H.H. & Nguyen, H.-T. & Kalam, M.A. & Chuah, H.G. & Alabdulkarem, A., 2019. "Impact of two-stage injection fuel quantity on engine-out responses of a common-rail diesel engine fueled with coconut oil methyl esters-diesel fuel blends," Renewable Energy, Elsevier, vol. 139(C), pages 515-529.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:181:y:2019:i:c:p:1094-1113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.