IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v216y2021ics0360544220321769.html
   My bibliography  Save this article

Distributed real-time power management for virtual energy storage systems using dynamic price

Author

Listed:
  • Kang, Wenfa
  • Chen, Minyou
  • Lai, Wei
  • Luo, Yanyu

Abstract

Energy storage systems (ESS) are widely used in active distribution networks (ADN) to smoothen the drastic fluctuation of renewable energy sources (RES). In order to enhance the scalability and flexibility of ESS, a virtual energy storage system (VESS), which is composed of battery energy storage system (BESS), RES as well as flexible loads (FL), is developed in this paper to realize the functionalities of ESS in more cost-effective way in ADN. Aiming at achieving voltage regulation, dynamic pricing strategies based on system voltage condition are designed for VESS. A distributed real-time power management model containing dynamic pricing strategies is proposed to accomplish the voltage regulation and economic power sharing in VESS. Moreover, a set of distributed algorithms, over time-varying unbalanced directed networks, are designed for dynamic pricing strategies and optimal power management model. Furthermore, the convergence property, optimality and system voltage stability are explained by detailed mathematical analysis. Three various case studies which were ran on a real time digital simulator (OPAL-RT OP5600) were designed to validate the effectiveness of the strategy. Finally, simulation results show that the economic power dispatch and voltage regulation are achieved among VESS simultaneously, even in the presence of time-varying directed and unbalanced communication networks.

Suggested Citation

  • Kang, Wenfa & Chen, Minyou & Lai, Wei & Luo, Yanyu, 2021. "Distributed real-time power management for virtual energy storage systems using dynamic price," Energy, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:energy:v:216:y:2021:i:c:s0360544220321769
    DOI: 10.1016/j.energy.2020.119069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220321769
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ju, Liwei & Tan, Zhongfu & Yuan, Jinyun & Tan, Qingkun & Li, Huanhuan & Dong, Fugui, 2016. "A bi-level stochastic scheduling optimization model for a virtual power plant connected to a wind–photovoltaic–energy storage system considering the uncertainty and demand response," Applied Energy, Elsevier, vol. 171(C), pages 184-199.
    2. Li, Qiang & Gao, Mengkai & Lin, Houfei & Chen, Ziyu & Chen, Minyou, 2019. "MAS-based distributed control method for multi-microgrids with high-penetration renewable energy," Energy, Elsevier, vol. 171(C), pages 284-295.
    3. Amrollahi, Mohammad Hossein & Bathaee, Seyyed Mohammad Taghi, 2017. "Techno-economic optimization of hybrid photovoltaic/wind generation together with energy storage system in a stand-alone micro-grid subjected to demand response," Applied Energy, Elsevier, vol. 202(C), pages 66-77.
    4. Jin, Xiaolong & Mu, Yunfei & Jia, Hongjie & Wu, Jianzhong & Jiang, Tao & Yu, Xiaodan, 2017. "Dynamic economic dispatch of a hybrid energy microgrid considering building based virtual energy storage system," Applied Energy, Elsevier, vol. 194(C), pages 386-398.
    5. Cheng, Meng & Sami, Saif Sabah & Wu, Jianzhong, 2017. "Benefits of using virtual energy storage system for power system frequency response," Applied Energy, Elsevier, vol. 194(C), pages 376-385.
    6. Radhakrishnan, Bharat Menon & Srinivasan, Dipti, 2016. "A multi-agent based distributed energy management scheme for smart grid applications," Energy, Elsevier, vol. 103(C), pages 192-204.
    7. Nikmehr, Nima, 2020. "Distributed robust operational optimization of networked microgrids embedded interconnected energy hubs," Energy, Elsevier, vol. 199(C).
    8. Asad, R. & Kazemi, A., 2014. "A novel distributed optimal power sharing method for radial dc microgrids with different distributed energy sources," Energy, Elsevier, vol. 72(C), pages 291-299.
    9. Huang, Yuqing & Lan, Hai & Hong, Ying-Yi & Wen, Shuli & Fang, Sidun, 2020. "Joint voyage scheduling and economic dispatch for all-electric ships with virtual energy storage systems," Energy, Elsevier, vol. 190(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zare Oskouei, Morteza & Gharehpetian, Gevork B., 2024. "Flexibility enhancement of multi-district DISCOs considering a trade-off between congestion and extractable reserve capacity from virtual energy storage systems," Applied Energy, Elsevier, vol. 353(PB).
    2. Miranda, Rodolfo Farías & Salgado-Herrera, Nadia Maria & Rodríguez-Hernández, Osvaldo & Rodríguez-Rodríguez, Juan Ramon & Robles, Miguel & Ruiz-Robles, Dante & Venegas-Rebollar, Vicente, 2022. "Distributed generation in low-voltage DC systems by wind energy in the Baja California Peninsula, Mexico," Energy, Elsevier, vol. 242(C).
    3. Mostafa Darvishi & Mehrdad Tahmasebi & Ehsan Shokouhmand & Jagadeesh Pasupuleti & Pitshou Bokoro & Jwan Satei Raafat, 2023. "Optimal Operation of Sustainable Virtual Power Plant Considering the Amount of Emission in the Presence of Renewable Energy Sources and Demand Response," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
    4. He, Yi & Guo, Su & Dong, Peixin & Huang, Jing & Zhou, Jianxu, 2023. "Hierarchical optimization of policy and design for standalone hybrid power systems considering lifecycle carbon reduction subsidy," Energy, Elsevier, vol. 262(PA).
    5. Ajay Shetgaonkar & Aleksandra Lekić & José Luis Rueda Torres & Peter Palensky, 2021. "Microsecond Enhanced Indirect Model Predictive Control for Dynamic Power Management in MMC Units," Energies, MDPI, vol. 14(11), pages 1-26, June.
    6. Yin, Linfei & Lu, Yuejiang, 2021. "Expandable deep width learning for voltage control of three-state energy model based smart grids containing flexible energy sources," Energy, Elsevier, vol. 226(C).
    7. Aghdam, Farid Hamzeh & Mudiyanselage, Manthila Wijesooriya & Mohammadi-Ivatloo, Behnam & Marzband, Mousa, 2023. "Optimal scheduling of multi-energy type virtual energy storage system in reconfigurable distribution networks for congestion management," Applied Energy, Elsevier, vol. 333(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    2. Qitong Fu & Zuoxia Xing & Chao Zhang & Jian Xu, 2024. "A Review and Prospective Study on Modeling Approaches and Applications of Virtual Energy Storage in Integrated Electric–Thermal Energy Systems," Energies, MDPI, vol. 17(16), pages 1-21, August.
    3. Ding, Yi & Shao, Changzheng & Yan, Jinyue & Song, Yonghua & Zhang, Chi & Guo, Chuangxin, 2018. "Economical flexibility options for integrating fluctuating wind energy in power systems: The case of China," Applied Energy, Elsevier, vol. 228(C), pages 426-436.
    4. Aghdam, Farid Hamzeh & Mudiyanselage, Manthila Wijesooriya & Mohammadi-Ivatloo, Behnam & Marzband, Mousa, 2023. "Optimal scheduling of multi-energy type virtual energy storage system in reconfigurable distribution networks for congestion management," Applied Energy, Elsevier, vol. 333(C).
    5. Wu, Kunming & Li, Qiang & Chen, Ziyu & Lin, Jiayang & Yi, Yongli & Chen, Minyou, 2021. "Distributed optimization method with weighted gradients for economic dispatch problem of multi-microgrid systems," Energy, Elsevier, vol. 222(C).
    6. Jordehi, A. Rezaee, 2019. "Optimisation of demand response in electric power systems, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 308-319.
    7. Jungsub Sim & Minsoo Kim & Dongjoo Kim & Hongseok Kim, 2021. "Cloud Energy Storage System Operation with Capacity P2P Transaction," Energies, MDPI, vol. 14(2), pages 1-13, January.
    8. Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
    9. Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).
    10. Keon Baek & Woong Ko & Jinho Kim, 2019. "Optimal Scheduling of Distributed Energy Resources in Residential Building under the Demand Response Commitment Contract," Energies, MDPI, vol. 12(14), pages 1-19, July.
    11. Yunlong Zhang & Panhong Zhang & Sheng Du & Hanlin Dong, 2024. "Economic Optimal Scheduling of Integrated Energy System Considering Wind–Solar Uncertainty and Power to Gas and Carbon Capture and Storage," Energies, MDPI, vol. 17(11), pages 1-26, June.
    12. Pusceddu, Elian & Zakeri, Behnam & Castagneto Gissey, Giorgio, 2021. "Synergies between energy arbitrage and fast frequency response for battery energy storage systems," Applied Energy, Elsevier, vol. 283(C).
    13. Mohseni, Soheil & Brent, Alan C. & Burmester, Daniel, 2020. "A comparison of metaheuristics for the optimal capacity planning of an isolated, battery-less, hydrogen-based micro-grid," Applied Energy, Elsevier, vol. 259(C).
    14. Aliakbari Sani, Sajad & Bahn, Olivier & Delage, Erick, 2022. "Affine decision rule approximation to address demand response uncertainty in smart Grids’ capacity planning," European Journal of Operational Research, Elsevier, vol. 303(1), pages 438-455.
    15. Wang, Zibo & Yu, Xiaodan & Mu, Yunfei & Jia, Hongjie, 2020. "A distributed Peer-to-Peer energy transaction method for diversified prosumers in Urban Community Microgrid System," Applied Energy, Elsevier, vol. 260(C).
    16. Nor Liza Tumeran & Siti Hajar Yusoff & Teddy Surya Gunawan & Mohd Shahrin Abu Hanifah & Suriza Ahmad Zabidi & Bernardi Pranggono & Muhammad Sharir Fathullah Mohd Yunus & Siti Nadiah Mohd Sapihie & Asm, 2023. "Model Predictive Control Based Energy Management System Literature Assessment for RES Integration," Energies, MDPI, vol. 16(8), pages 1-27, April.
    17. Yan, Rujing & Wang, Jiangjiang & Wang, Jiahao & Tian, Lei & Tang, Saiqiu & Wang, Yuwei & Zhang, Jing & Cheng, Youliang & Li, Yuan, 2022. "A two-stage stochastic-robust optimization for a hybrid renewable energy CCHP system considering multiple scenario-interval uncertainties," Energy, Elsevier, vol. 247(C).
    18. Javed, Muhammad Shahzad & Jurasz, Jakub & McPherson, Madeleine & Dai, Yanjun & Ma, Tao, 2022. "Quantitative evaluation of renewable-energy-based remote microgrids: curtailment, load shifting, and reliability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    19. del Horno, L. & Segura, E. & Morales, R. & Somolinos, J.A., 2020. "Exhaustive closed loop behavior of an one degree of freedom first-generation device for harnessing energy from marine currents," Applied Energy, Elsevier, vol. 276(C).
    20. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:216:y:2021:i:c:s0360544220321769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.