IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v222y2021ics036054422100147x.html
   My bibliography  Save this article

Distributed optimization method with weighted gradients for economic dispatch problem of multi-microgrid systems

Author

Listed:
  • Wu, Kunming
  • Li, Qiang
  • Chen, Ziyu
  • Lin, Jiayang
  • Yi, Yongli
  • Chen, Minyou

Abstract

After microgrids (MGs) are built in a near region, a good idea is interconnecting those neighboring MGs to form a multi-microgrid (MMG) system and support each other. Apparently, the economic dispatch problem (EDP) of an MMG system is much more complex than that of an MG. In this paper, the EDPs of an MMG system is formulated as a two-layer interdependent network, where the bottom layer is a network that energy flows (called energy network), while the top layer is a network that information exchanges (called information network). The information network consists of two types of subnetworks, within-MG subnetworks and between-MG subnetworks, in which on within-MG subnetworks, the optimal outputs of distributed generators (DGs) are achieved and the supply-demand balance is reached in an MG, while on between-MG subnetworks, the outputs of MGs are coordinated to support one another optimally in the MMG system. Further, a distributed optimization method with weighted gradients (DOWG) is proposed to solve the EDPs of the MMG system on the information network, where equality constraints in optimization problems are dealt with by the weighted matrix and dynamic step sizes are employed to achieve faster convergence rate. Furthermore, two propositions are proved, which ensure the supply-demand balance is not broken at an arbitrary iteration. Finally, Simulations are carried out on the MMG system built in MATLAB/Simulink. The results show that the convergence rate of the proposed method (DOWG) is faster and higher accuracies are obtained, compared to two other methods. Moreover, applying the proposed method, the optimal outputs of DGs are obtained in MGs and the MMG system is coordinated optimally, when both loads and environmental conditions fluctuate largely. More importantly, the proposed method still can run the MMG system well, even if the failures of agents occur.

Suggested Citation

  • Wu, Kunming & Li, Qiang & Chen, Ziyu & Lin, Jiayang & Yi, Yongli & Chen, Minyou, 2021. "Distributed optimization method with weighted gradients for economic dispatch problem of multi-microgrid systems," Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:energy:v:222:y:2021:i:c:s036054422100147x
    DOI: 10.1016/j.energy.2021.119898
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422100147X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.119898?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tan, Bifei & Chen, Haoyong, 2020. "Multi-objective energy management of multiple microgrids under random electric vehicle charging," Energy, Elsevier, vol. 208(C).
    2. Li, Qiang & Gao, Mengkai & Lin, Houfei & Chen, Ziyu & Chen, Minyou, 2019. "MAS-based distributed control method for multi-microgrids with high-penetration renewable energy," Energy, Elsevier, vol. 171(C), pages 284-295.
    3. Karimi, Hamid & Jadid, Shahram, 2020. "Optimal energy management for multi-microgrid considering demand response programs: A stochastic multi-objective framework," Energy, Elsevier, vol. 195(C).
    4. Xie, Min & Ji, Xiang & Hu, Xintong & Cheng, Peijun & Du, Yuxin & Liu, Mingbo, 2018. "Autonomous optimized economic dispatch of active distribution system with multi-microgrids," Energy, Elsevier, vol. 153(C), pages 479-489.
    5. Li, Bo & Ma, Ziming & Hidalgo-Gonzalez, Patricia & Lathem, Alex & Fedorova, Natalie & He, Gang & Zhong, Haiwang & Chen, Minyou & Kammen, Daniel M., 2021. "Modeling the impact of EVs in the Chinese power system: Pathways for implementing emissions reduction commitments in the power and transportation sectors," Energy Policy, Elsevier, vol. 149(C).
    6. Hossain, Md Alamgir & Pota, Hemanshu Roy & Squartini, Stefano & Abdou, Ahmed Fathi, 2019. "Modified PSO algorithm for real-time energy management in grid-connected microgrids," Renewable Energy, Elsevier, vol. 136(C), pages 746-757.
    7. Ruan, Guangchun & Zhong, Haiwang & Wang, Jianxiao & Xia, Qing & Kang, Chongqing, 2020. "Neural-network-based Lagrange multiplier selection for distributed demand response in smart grid," Applied Energy, Elsevier, vol. 264(C).
    8. Roy, Kallol & Mandal, Kamal Krishna & Mandal, Atis Chandra, 2019. "Ant-Lion Optimizer algorithm and recurrent neural network for energy management of micro grid connected system," Energy, Elsevier, vol. 167(C), pages 402-416.
    9. Nikmehr, Nima, 2020. "Distributed robust operational optimization of networked microgrids embedded interconnected energy hubs," Energy, Elsevier, vol. 199(C).
    10. L. Xiao & S. Boyd, 2006. "Optimal Scaling of a Gradient Method for Distributed Resource Allocation," Journal of Optimization Theory and Applications, Springer, vol. 129(3), pages 469-488, June.
    11. Moradi, Hadis & Esfahanian, Mahdi & Abtahi, Amir & Zilouchian, Ali, 2018. "Optimization and energy management of a standalone hybrid microgrid in the presence of battery storage system," Energy, Elsevier, vol. 147(C), pages 226-238.
    12. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    13. Perera, A.T.D. & Attalage, R.A. & Perera, K.K.C.K. & Dassanayake, V.P.C., 2013. "Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission," Energy, Elsevier, vol. 54(C), pages 220-230.
    14. Yang, Xiyun & Liu, Siqu & Zhang, Le & Su, Jianzheng & Ye, Tianze, 2020. "Design and analysis of a renewable energy power system for shale oil exploitation using hierarchical optimization," Energy, Elsevier, vol. 206(C).
    15. Chen, J.J. & Qi, B.X. & Rong, Z.K. & Peng, K. & Zhao, Y.L. & Zhang, X.H., 2021. "Multi-energy coordinated microgrid scheduling with integrated demand response for flexibility improvement," Energy, Elsevier, vol. 217(C).
    16. Chedid, Riad & Sawwas, Ahmad & Fares, Dima, 2020. "Optimal design of a university campus micro-grid operating under unreliable grid considering PV and battery storage," Energy, Elsevier, vol. 200(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Swarupa Pinninti & Srinivasa Rao Sura, 2023. "Renewables based dynamic cost-effective optimal scheduling of distributed generators using teaching–learning-based optimization," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 353-373, March.
    2. Roldán-Blay, Carlos & Escrivá-Escrivá, Guillermo & Roldán-Porta, Carlos & Dasí-Crespo, Daniel, 2023. "Optimal sizing and design of renewable power plants in rural microgrids using multi-objective particle swarm optimization and branch and bound methods," Energy, Elsevier, vol. 284(C).
    3. Sourav Basak & Bishwajit Dey & Biplab Bhattacharyya, 2023. "Uncertainty-based dynamic economic dispatch for diverse load and wind profiles using a novel hybrid algorithm," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4723-4763, May.
    4. Wang, Hao-ran & Feng, Tian-tian & Xiong, Wei, 2022. "How can the dynamic game be integrated into blockchain-based distributed energy resources multi-agent transactions for decision-making?," Energy, Elsevier, vol. 254(PB).
    5. Tang, Xiongmin & Li, Zhengshuo & Xu, Xuancong & Zeng, Zhijun & Jiang, Tianhong & Fang, Wenrui & Meng, Anbo, 2022. "Multi-objective economic emission dispatch based on an extended crisscross search optimization algorithm," Energy, Elsevier, vol. 244(PA).
    6. Sourav Basak & Biplab Bhattacharyya & Bishwajit Dey, 2022. "Combined economic emission dispatch on dynamic systems using hybrid CSA-JAYA Algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2269-2290, October.
    7. Srikant Misra & P. K. Panigrahi & Bishwajit Dey, 2023. "An efficient way to schedule dispersed generators for a microgrid system's economical operation under various power market conditions and grid involvement," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1799-1809, October.
    8. Yang, Jun & Sun, Fengyuan & Wang, Haitao, 2023. "Distributed collaborative optimal economic dispatch of integrated energy system based on edge computing," Energy, Elsevier, vol. 284(C).
    9. Zhou, Xu & Ma, Zhongjing & Zou, Suli & Zhang, Jinhui, 2022. "Consensus-based distributed economic dispatch for Multi Micro Energy Grid systems under coupled carbon emissions," Applied Energy, Elsevier, vol. 324(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Xu & Ma, Zhongjing & Zou, Suli & Zhang, Jinhui, 2022. "Consensus-based distributed economic dispatch for Multi Micro Energy Grid systems under coupled carbon emissions," Applied Energy, Elsevier, vol. 324(C).
    2. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    3. Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).
    4. Karimi, Hamid & Jadid, Shahram, 2020. "Optimal energy management for multi-microgrid considering demand response programs: A stochastic multi-objective framework," Energy, Elsevier, vol. 195(C).
    5. Nemanja Mišljenović & Matej Žnidarec & Goran Knežević & Damir Šljivac & Andreas Sumper, 2023. "A Review of Energy Management Systems and Organizational Structures of Prosumers," Energies, MDPI, vol. 16(7), pages 1-32, March.
    6. Mansouri, S.A. & Ahmarinejad, A. & Nematbakhsh, E. & Javadi, M.S. & Esmaeel Nezhad, A. & Catalão, J.P.S., 2022. "A sustainable framework for multi-microgrids energy management in automated distribution network by considering smart homes and high penetration of renewable energy resources," Energy, Elsevier, vol. 245(C).
    7. Tayab, Usman Bashir & Lu, Junwei & Yang, Fuwen & AlGarni, Tahani Saad & Kashif, Muhammad, 2021. "Energy management system for microgrids using weighted salp swarm algorithm and hybrid forecasting approach," Renewable Energy, Elsevier, vol. 180(C), pages 467-481.
    8. Yinghao Shan & Liqian Ma & Xiangkai Yu, 2023. "Hierarchical Control and Economic Optimization of Microgrids Considering the Randomness of Power Generation and Load Demand," Energies, MDPI, vol. 16(14), pages 1-23, July.
    9. Zhang, M.Y. & Chen, J.J. & Yang, Z.J. & Peng, K. & Zhao, Y.L. & Zhang, X.H., 2021. "Stochastic day-ahead scheduling of irrigation system integrated agricultural microgrid with pumped storage and uncertain wind power," Energy, Elsevier, vol. 237(C).
    10. Md Shafiullah & Akib Mostabe Refat & Md Ershadul Haque & Dewan Mabrur Hasan Chowdhury & Md Sanower Hossain & Abdullah G. Alharbi & Md Shafiul Alam & Amjad Ali & Shorab Hossain, 2022. "Review of Recent Developments in Microgrid Energy Management Strategies," Sustainability, MDPI, vol. 14(22), pages 1-30, November.
    11. Ali Sahebi & Shahram Jadid & Morteza Nazari-Heris, 2023. "Flexibility Analysis for Multi-Energy Microgrid and Distribution System Operator under a Distributed Local Energy Market Framework," Sustainability, MDPI, vol. 15(13), pages 1-23, June.
    12. Hasankhani, Arezoo & Hakimi, Seyed Mehdi, 2021. "Stochastic energy management of smart microgrid with intermittent renewable energy resources in electricity market," Energy, Elsevier, vol. 219(C).
    13. Raya-Armenta, Jose Maurilio & Bazmohammadi, Najmeh & Avina-Cervantes, Juan Gabriel & Sáez, Doris & Vasquez, Juan C. & Guerrero, Josep M., 2021. "Energy management system optimization in islanded microgrids: An overview and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    14. Papadimitrakis, M. & Giamarelos, N. & Stogiannos, M. & Zois, E.N. & Livanos, N.A.-I. & Alexandridis, A., 2021. "Metaheuristic search in smart grid: A review with emphasis on planning, scheduling and power flow optimization applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    15. Romain Mannini & Julien Eynard & Stéphane Grieu, 2022. "A Survey of Recent Advances in the Smart Management of Microgrids and Networked Microgrids," Energies, MDPI, vol. 15(19), pages 1-37, September.
    16. Kang, Wenfa & Chen, Minyou & Lai, Wei & Luo, Yanyu, 2021. "Distributed real-time power management for virtual energy storage systems using dynamic price," Energy, Elsevier, vol. 216(C).
    17. He, Shuaijia & Gao, Hongjun & Chen, Zhe & Liu, Junyong & Zhao, Liang & Wu, Gang & Xu, Song, 2022. "Low-carbon distribution system planning considering flexible support of zero-carbon energy station," Energy, Elsevier, vol. 244(PB).
    18. Elattar, Ehab E. & ElSayed, Salah K., 2020. "Probabilistic energy management with emission of renewable micro-grids including storage devices based on efficient salp swarm algorithm," Renewable Energy, Elsevier, vol. 153(C), pages 23-35.
    19. Han, Dongho & Lee, Jay H., 2021. "Two-stage stochastic programming formulation for optimal design and operation of multi-microgrid system using data-based modeling of renewable energy sources," Applied Energy, Elsevier, vol. 291(C).
    20. Muhammad Salman Sami & Muhammad Abrar & Rizwan Akram & Muhammad Majid Hussain & Mian Hammad Nazir & Muhammad Saad Khan & Safdar Raza, 2021. "Energy Management of Microgrids for Smart Cities: A Review," Energies, MDPI, vol. 14(18), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:222:y:2021:i:c:s036054422100147x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.