High-grade bio-oil produced from coconut shell: A comparative study of microwave reactor and core-shell catalyst
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2020.118692
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wei, Z.S. & Du, Z.Y. & Lin, Z.H. & He, H.M. & Qiu, R.L., 2007. "Removal of NOx by microwave reactor with ammonium bicarbonate and Ga-A zeolites at low temperature," Energy, Elsevier, vol. 32(8), pages 1455-1459.
- Ma, Wenchao & Liu, Bin & Zhang, Ruixue & Gu, Tianbao & Ji, Xiang & Zhong, Lei & Chen, Guanyi & Ma, Longlong & Cheng, Zhanjun & Li, Xiangping, 2018. "Co-upgrading of raw bio-oil with kitchen waste oil through fluid catalytic cracking (FCC)," Applied Energy, Elsevier, vol. 217(C), pages 233-240.
- Butler, Eoin & Devlin, Ger & Meier, Dietrich & McDonnell, Kevin, 2011. "A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4171-4186.
- Bhoi, P.R. & Ouedraogo, A.S. & Soloiu, V. & Quirino, R., 2020. "Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Potnuri, Ramesh & Suriapparao, Dadi V. & Sankar Rao, Chinta & Sridevi, Veluru & Kumar, Abhishankar, 2022. "Effect of dry torrefaction pretreatment of the microwave-assisted catalytic pyrolysis of biomass using the machine learning approach," Renewable Energy, Elsevier, vol. 197(C), pages 798-809.
- Wei, Xiaocui & Cao, Yang & Li, Jin, 2022. "Synergistic effect of acid sites and a gallium-based modified meso-/microporous catalyst for the pyrolysis of biomass," Renewable Energy, Elsevier, vol. 191(C), pages 580-590.
- Ren, Xueyong & Shanb Ghazani, Mohammad & Zhu, Hui & Ao, Wenya & Zhang, Han & Moreside, Emma & Zhu, Jinjiao & Yang, Pu & Zhong, Na & Bi, Xiaotao, 2022. "Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review," Applied Energy, Elsevier, vol. 315(C).
- Wei, Xiaocui & Liu, Yanan & Cao, Yang & Li, Jin & Meng, Xianghao & Zhang, Zhao & Jiang, Zhongyi, 2022. "Hierarchical gallium-modified ZSM-5@SBA-15 for the catalytic pyrolysis of biomass into hydrocarbons," Renewable Energy, Elsevier, vol. 200(C), pages 1037-1046.
- Dong, Yichen & Mao, Songbo & Guo, Feiqiang & Shu, Rui & Bai, Jiaming & Qian, Lin & Bai, Yonghui, 2022. "Coal gasification fine slags: Investigation of the potential as both microwave adsorbers and catalysts in microwave-induced biomass pyrolysis applications," Energy, Elsevier, vol. 238(PB).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Aboagye, D. & Banadda, N. & Kiggundu, N. & Kabenge, I., 2017. "Assessment of orange peel waste availability in ghana and potential bio-oil yield using fast pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 814-821.
- Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
- Zhou, Xin & Yan, Hao & Sun, Zongzhuang & Feng, Xiang & Zhao, Hui & Liu, Yibin & Chen, Xiaobo & Yang, Chaohe, 2021. "Opportunities for utilizing waste cooking oil in crude to petrochemical process: Novel process design, optimal strategy, techno-economic analysis and life cycle society-environment assessment," Energy, Elsevier, vol. 237(C).
- Jean de Dieu Marcel Ufitikirezi & Martin Filip & Mohammad Ghorbani & Tomáš Zoubek & Pavel Olšan & Roman Bumbálek & Miroslav Strob & Petr Bartoš & Sandra Nicole Umurungi & Yves Theoneste Murindangabo &, 2024. "Agricultural Waste Valorization: Exploring Environmentally Friendly Approaches to Bioenergy Conversion," Sustainability, MDPI, vol. 16(9), pages 1-24, April.
- Zhang, Xing & Wang, Kaige & Chen, Junhao & Zhu, Lingjun & Wang, Shurong, 2020. "Mild hydrogenation of bio-oil and its derived phenolic monomers over Pt–Ni bimetal-based catalysts," Applied Energy, Elsevier, vol. 275(C).
- Fan, Xudong & Wu, Yujian & Sun, Yan & Tu, Ren & Ren, Zhipeng & Liang, Kaili & Jiang, Enchen & Ren, Yongzhi & Xu, Xiwei, 2022. "Functional groups anchoring-induced Ni/MoOx-Ov interface on rice husk char for hydrodeoxygenation of bio-guaiacol to BTX at ambient-pressure," Renewable Energy, Elsevier, vol. 200(C), pages 579-591.
- Chen, Guanyi & Yao, Jingang & Liu, Jing & Yan, Beibei & Shan, Rui, 2016. "Biomass to hydrogen-rich syngas via catalytic steam reforming of bio-oil," Renewable Energy, Elsevier, vol. 91(C), pages 315-322.
- Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
- Wang, Jia & Jiang, Jianchun & Li, Dongxian & Meng, Xianzhi & Zhan, Guowu & Wang, Yunpu & Zhang, Aihua & Sun, Yunjuan & Ruan, Roger & Ragauskas, Arthur J., 2022. "Creating values from wastes: Producing biofuels from waste cooking oil via a tandem vapor-phase hydrotreating process," Applied Energy, Elsevier, vol. 323(C).
- Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
- Theodore Dickerson & Juan Soria, 2013. "Catalytic Fast Pyrolysis: A Review," Energies, MDPI, vol. 6(1), pages 1-25, January.
- Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
- Arnob Das & Susmita Datta Peu, 2022. "A Comprehensive Review on Recent Advancements in Thermochemical Processes for Clean Hydrogen Production to Decarbonize the Energy Sector," Sustainability, MDPI, vol. 14(18), pages 1-42, September.
- Jin, Yanghao & Liu, Sirui & Shi, Ziyi & Wang, Shule & Wen, Yuming & Zaini, Ilman Nuran & Tang, Chuchu & Hedenqvist, Mikael S. & Lu, Xincheng & Kawi, Sibudjing & Wang, Chi-Hwa & Jiang, Jianchun & Jönss, 2024. "A novel three-stage ex-situ catalytic pyrolysis process for improved bio-oil yield and quality from lignocellulosic biomass," Energy, Elsevier, vol. 295(C).
- Bhattacharya, Madhuchhanda & Basak, Tanmay, 2013. "A theoretical study on the use of microwaves in reducing energy consumption for an endothermic reaction: Role of metal coated bounding surface," Energy, Elsevier, vol. 55(C), pages 278-294.
- Görling, Martin & Larsson, Mårten & Alvfors, Per, 2013. "Bio-methane via fast pyrolysis of biomass," Applied Energy, Elsevier, vol. 112(C), pages 440-447.
- Waheed A. Rasaq & Mateusz Golonka & Miklas Scholz & Andrzej Białowiec, 2021. "Opportunities and Challenges of High-Pressure Fast Pyrolysis of Biomass: A Review," Energies, MDPI, vol. 14(17), pages 1-20, August.
- Carvalho, Wender Santana & Santana Júnior, José Alair & de Oliveira, Tiago José Pires & Ataíde, Carlos Henrique, 2017. "Fast pyrolysis of sweet sorghum bagasse in a fluidized bed reactor: Product characterization and comparison with vapors generated in analytical pyrolysis," Energy, Elsevier, vol. 131(C), pages 186-197.
- Hao Luo & Lukasz Niedzwiecki & Amit Arora & Krzysztof Mościcki & Halina Pawlak-Kruczek & Krystian Krochmalny & Marcin Baranowski & Mayank Tiwari & Anshul Sharma & Tanuj Sharma & Zhimin Lu, 2020. "Influence of Torrefaction and Pelletizing of Sawdust on the Design Parameters of a Fixed Bed Gasifier," Energies, MDPI, vol. 13(11), pages 1-19, June.
- Cui, Yunlei & Zhang, Yaning & Cui, Longfei & Xiong, Qingang & Mostafa, Ehab, 2023. "Microwave-assisted fluidized bed reactor pyrolysis of polypropylene plastic for pyrolysis gas production towards a sustainable development," Applied Energy, Elsevier, vol. 342(C).
More about this item
Keywords
Bio-oil; Microwave-assisted pyrolysis; Catalytic pyrolysis; Zeolites; Coconut shell;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:212:y:2020:i:c:s0360544220318004. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.