IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v195y2020ics0360544220300761.html
   My bibliography  Save this article

Study on pyrolysis products characteristics of medical waste and fractional condensation of the pyrolysis oil

Author

Listed:
  • Fang, Shuqi
  • Jiang, Luyao
  • Li, Pan
  • Bai, Jing
  • Chang, Chun

Abstract

The dried and pulverized medical solid waste was pyrolyzed at 500 °C, and the components and characteristics were analyzed after the solid, liquid and gas products were collected respectively. Experimental results showed that the combustible component in the obtained gas product accounted for 83.22% and the heat value was 10,995.02kcal/Nm3. The liquid product obtained was black viscous tar with a heat value of 8972.82 kcal/kg, GC/MS analysis indicated that hydrocarbons and lipids accounted for about 60% of liquid product, and the carbon chain length of the products is C6–C28. The carbon content of solid product after purification was up to 63.13%, and the heat value was 5454.54 kcal/kg. Furthermore, in order to make the most of the pyrolysis oil, the liquid product was separated and purified by fractional condensation under the condition of decompression. The effect of process parameters such as vacuum degree and condensing temperature was emphasized, and the optimum technological condition was obtained as follows: vacuum degree 0.04 MPa, heating temperature 140 °C and the first stage condensing temperature was 70 °C. Finally, the viscosity measurement of the residual high-viscosity components was intended to provide data support for the solution of tar plugging equipment and piping problems in practical applications.

Suggested Citation

  • Fang, Shuqi & Jiang, Luyao & Li, Pan & Bai, Jing & Chang, Chun, 2020. "Study on pyrolysis products characteristics of medical waste and fractional condensation of the pyrolysis oil," Energy, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:energy:v:195:y:2020:i:c:s0360544220300761
    DOI: 10.1016/j.energy.2020.116969
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220300761
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.116969?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Zixu & Kumar, Ajay & Huhnke, Raymond L., 2015. "Review of recent developments to improve storage and transportation stability of bio-oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 859-870.
    2. Butler, Eoin & Devlin, Ger & Meier, Dietrich & McDonnell, Kevin, 2011. "A review of recent laboratory research and commercial developments in fast pyrolysis and upgrading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4171-4186.
    3. Guo, Zuogang & Wang, Shurong & Wang, Xiangyu, 2014. "Stability mechanism investigation of emulsion fuels from biomass pyrolysis oil and diesel," Energy, Elsevier, vol. 66(C), pages 250-255.
    4. Chen, Dengyu & Zhou, Jianbin & Zhang, Qisheng & Zhu, Xifeng, 2014. "Evaluation methods and research progresses in bio-oil storage stability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 69-79.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Klemeš, Jiří Jaromír & Fan, Yee Van & Jiang, Peng, 2020. "The energy and environmental footprints of COVID-19 fighting measures – PPE, disinfection, supply chains," Energy, Elsevier, vol. 211(C).
    2. Min Su & Qiang Wang & Rongrong Li, 2021. "How to Dispose of Medical Waste Caused by COVID-19? A Case Study of China," IJERPH, MDPI, vol. 18(22), pages 1-18, November.
    3. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    4. Bai, Jing & Gao, Hang & Xu, Junhao & Li, Lefei & Zheng, Peng & Li, Pan & Song, Jiande & Chang, Chun & Pang, Shusheng, 2022. "Comprehensive study on the pyrolysis product characteristics of tobacco stems based on a novel nitrogen-enriched pyrolysis method," Energy, Elsevier, vol. 242(C).
    5. Georgios Giakoumakis & Dorothea Politi & Dimitrios Sidiras, 2021. "Medical Waste Treatment Technologies for Energy, Fuels, and Materials Production: A Review," Energies, MDPI, vol. 14(23), pages 1-30, December.
    6. Wang, Yuting & Chen, Heng & Qiao, Shichao & Pan, Peiyuan & Xu, Gang & Dong, Yuehong & Jiang, Xue, 2023. "A novel methanol-electricity cogeneration system based on the integration of water electrolysis and plasma waste gasification," Energy, Elsevier, vol. 267(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Lin, Bo-Jhih & Chen, Wei-Hsin & Budzianowski, Wojciech M. & Hsieh, Cheng-Ting & Lin, Pei-Hsun, 2016. "Emulsification analysis of bio-oil and diesel under various combinations of emulsifiers," Applied Energy, Elsevier, vol. 178(C), pages 746-757.
    3. de Luna, Mark Daniel G. & Cruz, Louie Angelo D. & Chen, Wei-Hsin & Lin, Bo-Jhih & Hsieh, Tzu-Hsien, 2017. "Improving the stability of diesel emulsions with high pyrolysis bio-oil content by alcohol co-surfactants and high shear mixing strategies," Energy, Elsevier, vol. 141(C), pages 1416-1428.
    4. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    5. Taghipour, Alireza & Ramirez, Jerome A. & Brown, Richard J. & Rainey, Thomas J., 2019. "A review of fractional distillation to improve hydrothermal liquefaction biocrude characteristics; future outlook and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    6. Nanduri, Arvind & Kulkarni, Shreesh S. & Mills, Patrick L., 2021. "Experimental techniques to gain mechanistic insight into fast pyrolysis of lignocellulosic biomass: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Wang, Chu & Ding, Haozhi & Zhang, Yiming & Zhu, Xifeng, 2020. "Analysis of property variation and stability on the aging of bio-oil from fractional condensation," Renewable Energy, Elsevier, vol. 148(C), pages 720-728.
    8. Kumar, R. & Strezov, V. & Weldekidan, H. & He, J. & Singh, S. & Kan, T. & Dastjerdi, B., 2020. "Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    9. Aboagye, D. & Banadda, N. & Kiggundu, N. & Kabenge, I., 2017. "Assessment of orange peel waste availability in ghana and potential bio-oil yield using fast pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 814-821.
    10. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    11. Hu, Hangli & Luo, Yanru & Zou, Jianfeng & Zhang, Shukai & Yellezuome, Dominic & Rahman, Md Maksudur & Li, Yingkai & Li, Chong & Cai, Junmeng, 2022. "Exploring aging kinetic mechanisms of bio-oil from biomass pyrolysis based on change in carbonyl content," Renewable Energy, Elsevier, vol. 199(C), pages 782-790.
    12. Jean de Dieu Marcel Ufitikirezi & Martin Filip & Mohammad Ghorbani & Tomáš Zoubek & Pavel Olšan & Roman Bumbálek & Miroslav Strob & Petr Bartoš & Sandra Nicole Umurungi & Yves Theoneste Murindangabo &, 2024. "Agricultural Waste Valorization: Exploring Environmentally Friendly Approaches to Bioenergy Conversion," Sustainability, MDPI, vol. 16(9), pages 1-24, April.
    13. Ayhan, Vezir & Ece, Yılmaz Mert, 2020. "New application to reduce NOx emissions of diesel engines: Electronically controlled direct water injection at compression stroke," Applied Energy, Elsevier, vol. 260(C).
    14. Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 15-35.
    15. Chen, Guanyi & Yao, Jingang & Liu, Jing & Yan, Beibei & Shan, Rui, 2016. "Biomass to hydrogen-rich syngas via catalytic steam reforming of bio-oil," Renewable Energy, Elsevier, vol. 91(C), pages 315-322.
    16. Feng, Ping & Li, Xiaoyang & Wang, Jinyu & Li, Jie & Wang, Huan & He, Lu, 2021. "The mixtures of bio-oil derived from different biomass and coal/char as biofuels: Combustion characteristics," Energy, Elsevier, vol. 224(C).
    17. Si, Buchun & Watson, Jamison & Wang, Zixin & Wang, Tengfei & Acero Triana, Juan S. & Zhang, Yuanhui, 2024. "Storage stability of biocrude oil fractional distillates derived from the hydrothermal liquefaction of food waste," Renewable Energy, Elsevier, vol. 220(C).
    18. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    19. Theodore Dickerson & Juan Soria, 2013. "Catalytic Fast Pyrolysis: A Review," Energies, MDPI, vol. 6(1), pages 1-25, January.
    20. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:195:y:2020:i:c:s0360544220300761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.